Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x+1\right)^2+8}{7-\left(y+1\right)^2}\) => không có GTNN cũng chẳng có LN
=x^2+4x+4+y^2+2y+1+z^2-5
=(X+2)^2+(Y+1)^2+z^2-5
Ta Có: (x+2)^2_>0 với mọi x dấu = xay ra khi x+2=0=> x=-2
(ý+1)^2_>0 Với mọi y dấu bằng xảy ra khi y+1=0=>y=-1
Z^2 _> 0 với mọi z dau = xay ra khi z=0
=>(x+2)^2+(y+1)^2+z^2-5>_-5
Vậy biểu thức trên đạt min là -5 khi X=-2; y=-1;z=0
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
Ta có:\(\frac{-2x-2}{x^2+3}=\frac{-x^2-3+x^2-2x+1}{x^2+3}=\frac{-x^2-3}{x^2+3}+\frac{x^2-2x+1}{x^2+3}=-1+\frac{\left(x-1\right)^2}{x^2+3}\ge-1\)
Vậy \(\frac{-2x-2}{x^2+3}min=-1\) tại \(x=1\).