\(\dfrac{x^4+2016}{x^4+1008}\) là ..... tại x=.......

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Ta có: \(\dfrac{x^4+2016}{x^4+1008}\) đạt GTNN khi \(x^4+1008\) đạt GTNN; đạt GTNN khi \(x^4+2016\) đạt GTLN

Lại có:

\(x^4\ge0\forall x\\ \Rightarrow x^4+1008\ge1008\forall x\)

\(\Rightarrow\) GTNN của \(x^4+1008=1008\) tại \(x=0\)

Thay \(x=0\) vào \(x^4+2016\), ta có:

\(0^4+2016=2016\)

\(\Rightarrow\) GTLN của: \(\dfrac{x^4+2016}{x^4+1008}=\dfrac{2016}{1008}=2\) tại \(x=0\)

2 tháng 3 2017

Để phần mau nho nhat

10 tháng 3 2016

dễ thôi đáp án bài này là 2

25 tháng 6 2015

mk nghĩ giá trị lớn nhất là bằng 2

17 tháng 6 2017

\(bx^2=ay^{2^{ }}=\dfrac{x^2}{\dfrac{1}{b}}=\dfrac{y^2}{\dfrac{1}{a}}=\dfrac{x^2+y^2}{\dfrac{a+b}{ab}}=\dfrac{ab}{a+b}.\)

\(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{1}{a+b}=\dfrac{y^2}{b}.\)

\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}=2.\left(\dfrac{1}{a+b}\right)^{1008}=\dfrac{2}{\left(a +b\right)^{1008}}\left(dpcm\right)\)

18 tháng 6 2017

Theo bài ra ta có:

\(bx^2=ay^2\) \(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)

\(x^2+y^2=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)

\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{1}{a+b}\) \(\left(1\right)\)

Từ \(\left(1\right)\) suy ra :

\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}\) \(=\dfrac{\left(x^2\right)^{1008}}{a^{1008}}+\dfrac{\left(y^2\right)^{1008}}{b^{1008}}\)

\(=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}\)

\(=\left(\dfrac{1}{a+b}\right)^{1008}+\left(\dfrac{1}{a+b}\right)^{1008}\)

\(=2\cdot\left(\dfrac{1}{a+b}\right)^{1008}\)

\(=2\cdot\dfrac{1^{1008}}{\left(a+b\right)^{1008}}\)

\(=2\cdot\dfrac{1}{\left(a+b\right)^{1008}}\)

\(=\dfrac{2}{a+b}^{1008}\)

Vậy \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{a+b}^{1008}\)

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

8 tháng 8 2015

\(A=\frac{x^4+2016}{x^4+1008}=1+\frac{1008}{x^4+1008}\)

Ta có: \(x^4\ge0\Rightarrow x^4+1008\ge1008\)\(\Rightarrow\frac{1008}{x^4+1008}\le\frac{1008}{1008}=1\)

\(\Rightarrow A\le2\)

Dấu "=" xảy ra khi x = 0.

Vậy GTLN của A là 2.

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)