Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(-\left|3x-\frac{7}{6}\right|\le0\)
\(\Rightarrow B=\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}\)
Vậy GTLN của B là \(\frac{5}{2}\) <=> \(3x-\frac{7}{6}=0\) <=> x = \(\frac{7}{18}\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
a) Ta có : \(|x-7|\ge0\)
\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)
Mà \(A=0\)
\(\Leftrightarrow5|x-7|=0\)
\(\Leftrightarrow x=7\left(2\right)\)
Từ (1) và (2) => max A = 124
b)
+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)
\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)
Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )
Còn lại bạn tự làm nha .
Cuối cùng ra \(_{max}B=\frac{7}{6}\)
\(\left|3x-\frac{7}{6}\right|\ge0=>\frac{5}{2}-\left|3x-\frac{7}{6}\right|\le\frac{5}{2}=2,5=>B_{max}=2,5<=>3x-\frac{7}{6}=0=>x=\frac{7}{18}\)
+) \(\left|x-\frac{4}{7}\right|\ge0\)
\(A=\left|x-\frac{4}{7}\right|-\frac{1}{2}\ge\frac{-1}{2}\)
min A=-1/2 tại x=4/7
+) \(\left|x+\frac{5}{3}\right|\ge0\)
\(B=-\left|x+\frac{5}{3}\right|\le0\)
max B=0 khi x=-5/3
a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)
b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)
a, Gọi A = 4a+2b−ca−b−c
Đặt a2 =b5 =c7 =k⇒{
a=2k |
b=5k |
c=7k |
=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110
b, Ta có: {
x2≥0 |
|y−3|≥0 |
∀x,y⇒A=x2+|y−3|+5≥5
Dấu "=" xảy ra khi {
x2=0 |
|y−3|=0 |
⇒{
x=0 |
y=3 |
Vậy MinA = 5 khi x = 0 và y = 3
c, xy + 3x - y = 6
<=> xy + 3x - y - 3 = 3
<=> x(y + 3) - (y + 3) = 3
<=> (x - 1)(y + 3) = 3
=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}
Ta có bảng:
x-1 | 1 | -1 | 3 | -3 |
y+3 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 0 | -6 | -2 | -4 |
Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)