Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
GTNN :
B=4x2+4x+11
= (2x)2+2*x*2+22+7
=(2x+2)2+7>= 7
dấu ''='' sảy ra khi 2x+2=0
=> x = -1
vậy GTNN của biểu thức B là 7 tại x = -1
\(B=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dau "=" xay ra <=> \(x=-\frac{1}{2}\)
Vay.....
Kết quả = 6, còn cách thì nghĩ đã......... Wait 20 phút nha
ta có:\(A=x^2-4x+5\)
\(\Leftrightarrow A=x^2-2.x.2+2^2-4+5\)
\(\Leftrightarrow A=\left(x-2\right)^2+1\)
Do \(\left(x-2\right)^2\ge0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=2\))
\(\Rightarrow\left(x-2\right)^2+1\ge1\) hay \(A\ge1\)(dấu "=" xảy ra\(\Leftrightarrow x=2\))
vậy \(A_{min}=1\) tại \(x=2\)
Ta có:\(B=-x^2+4x+5\)
\(\Leftrightarrow B=-\left(x^2-4x-5\right)\)
\(\Leftrightarrow B=-\left(x^2-2.x.2+2^2-4-5\right)\)
\(\Leftrightarrow B=-\left[\left(x-2\right)^2-5\right]\)
\(\Leftrightarrow B=-\left(x-2\right)^2+5\)
Do \(-\left(x-2\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=2\))
\(\Rightarrow-\left(x-2\right)^2+5\le5\) hay \(B\le5\) (dấu "=" xảy ra \(\Leftrightarrow x=2\))
vậy \(B_{max}=5\) tại \(x=2\)
A=\(x^2-4x+5=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\)
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+1\ge1\)
\(\Rightarrow A\ge1\)
Dấu = xảy ra khi
x-2=0
\(\Rightarrow x=2\)
vậy GTNN của A=1 khi x=2
B=\(-x^2+4x+5=-\left(x^2-4x-5\right)\)
\(\Rightarrow-\left(x-2\right)^2+9\)
\(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2+9\le9\)
\(\Rightarrow B\le9\)
Dấu = xảy ra khi \(-\left[-\left(x-2\right)^2+9\right]\)
đạt GTNN
suy ra x-2=0
suy ra x=2
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
- 4x2 + 12x - 2 = - 4x2 + 12x - 9 + 7 = - (4x2 - 12x + 9) + 7 = - (2x - 3)2 + 7
Ta có (2x - 3)2 > 0
- (2x - 3)2 < 0
- (2x - 3)2 + 7 < 7
\(\Rightarrow\) giá trị lớn nhất của biểu thức trên là 7
\(N=\frac{4x+1}{4x^2+2}=\frac{-4x^2+4x-1+4x^2+2}{4x^2+2}=\frac{-\left(2x-1\right)^2}{4x^2+2}+1\le1\forall x\)
Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vật giá trị lớn nhất của N là 1 khi \(x=\frac{1}{2}\)
\(N=\frac{4x+1}{4x^2+2}=\frac{4x^2+2}{4x^2+2}-\frac{4x^2+4x-1}{4x^2+2}=1-\frac{\left(2x-1\right)^2}{4x^2+2}\le1\)
GTLN cua N la1 dau'=' xay ra khi x=\(\frac{1}{2}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Ta có : B = 5 - 4x2 + 4x = -4x2 + 4x + 5 = -(4x2 - 4x - 5) = -(4x2 - 4x + 1 - 6) = -[(2x - 1)2 - 6] \(\le\) -6
Vậy GTLN của B là -6 khi x = 0,5
B= -4x2+ 4x+5
= -4x2+ 4x-1+6
=-(4x2- 4x+ 1)+6
=-(2x- 1)2+6
vì -(2x- 1)2 < hoặc =0
-(2x -1)2 +6 < hoặc=6
GTLN của B là 6
mk chắc chắn là đúng