\(\frac{10}{\left(x+2\right)^2+5}\)là
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

A lớn nhất <=>(x+2)2+5 nhỏ nhất 

Ta có:(x+2)2\(\ge\)0 với mọi x

=>(x+2)2+5\(\ge\)5

Hay Min (x+2)2+5=5 khi x=-2

Vậy Max A=10/5=2 khi x=-2

20 tháng 8 2016

chtt nha

20 tháng 8 2016

Ta có:

x+ 15/x2 + 3 = x2 + 3/x2 + 3 + 12/x2 + 3 = 1 + 12/x2 + 3

Để biểu thức trên đạt GTLN thì 12/x2 + 3 đạt GTLN 

=> x2 + 3 đạt GTNN

Mà x2 + 3 > hoặc = 3

Dấu "=" xảy ra khi và chỉ khi x = 0

=> GTLN của biểu thức: x2 + 15/x2 + 3 = 0 + 15/0 + 3 = 15/3 = 5

20 tháng 8 2016

Đặt: \(M=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+3}\)

Để M đạt GTLN thì \(x^2+3\) đạt giá trị nhỏ nhất.

Có: \(x^2\ge0\Rightarrow x^2+3\ge3\)

Dấu bằng xảy ra hi: \(x^2+3=3\Rightarrow x^2=0\Rightarrow x=0\)

Thay vào: \(M=1+\frac{12}{0^2+3}=1+\frac{12}{3}=1+4=5\)

Vậy: \(Max_M=5\) tại \(x=0\)

7 tháng 9 2016

\(B=9-\left|x-\frac{1}{2}\right|\)

Vì : \(-\left|x-\frac{1}{2}\right|\le9\)

=> \(9-\left|x-\frac{1}{2}\right|\le9\)

Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)

7 tháng 9 2016

Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)

Vậy Max B = 9 <=> x = 1/2

1 tháng 3 2016

giúp với mình sắp nạp rồi

17 tháng 7 2018

\(A=5-\left|\frac{2}{3}-x\right|\)

Ta có: \(\left|\frac{2}{3}-x\right|\ge0\forall x\)

\(\Rightarrow5-\left|\frac{2}{3}-x\right|\le5\forall x\)

\(A=5\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow x=\frac{2}{3}\)

Vậy \(A=5\Leftrightarrow x=\frac{2}{3}\)

17 tháng 7 2018

chữ A ngược có ngĩa là gì vậy

7 tháng 9 2016

Vì \(x\ge0\forall x\in R\)

=) \(x+\frac{3}{4}\ge\frac{3}{4}\forall x\in R\)

Dấu "=" xảy ra khi và chỉ khi : \(x+\frac{3}{4}=0\)

                                               \(\Rightarrow x=-\frac{3}{4}\)

Vậy GTNN của \(A=\left|x+\frac{3}{4}\right|\) = 0 khi và chỉ khi \(x=-\frac{3}{4}\)