Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta thấy:
\(-2x\left(x+5\right)+\left(2x^2+4\right)+10x\)
\(=-2x^2+-10x+2x^2+4+10x\)
\(=\left(-2x^2+2x^2\right)+\left(-10x+10x\right)+4\)
\(=0+0+4\)
\(=4\)
Vậy biểu thức -2x ( x + 5 ) + ( 2x2 + 4 ) + 10x có giá trị bằng 4
Ta có : (3x + 1)2 \(\ge0\forall x\)
=> 2(3x + 1)2 \(\ge0\forall x\)
=> 3 - 2(3x + 1)2 \(\le3\forall x\)
Vậy GTLN của A là 3 khi x = \(-\frac{1}{3}\)
\(-2x^2+6x-11=\left(-2\right)\left(x^2-3x+\frac{11}{2}\right)\)
\(=\left(-2\right)\left[x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+\frac{11}{2}\right]\)
\(=\left(-2\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\right]\)
\(=\left(-2\right)\left(x-\frac{3}{2}\right)^2-\frac{13}{2}\le-\frac{13}{2}\)
Vậy Max = -13/2 khi x - 3/2 = 0 => x = 3/2
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Ta có : \(B=14+2x-2x^2\)
\(\Rightarrow2B=2.\left(-2x^2+2x+14\right)\)
\(\Rightarrow2B=-4x^2+4x+28\)
\(\Rightarrow2B=-\left(2x\right)^2+2.2x-1+29\)
\(\Rightarrow2B=\left[\left(2x\right)^2-2.2x+1\right]+29\)
\(\Rightarrow2B=-\left(2x+1\right)^2+29\le29\)
\(\Rightarrow B\le\frac{29}{2}\)
Đẳng thức xảy ra khi : \(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(B_{MAX}=\frac{29}{2}\) khi \(x=\frac{1}{2}\)
Ta có : \(B=14+2x-2x\\ =>2B=2\left(-x^2+2x+14\right)\\ =>2B=-4^2+4x+28\\ =>2B=-\left(2x\right)^2+2.2x-1+29\\ \)
\(=>2B=\text{[(2x)^2-2.2x+1]+29=>2B=-(2x+1)^2+29\le}29\\ =>B\le\frac{29}{2}\)
Đẳng thức xảy ra khi : \(2x-1=0=>x=\frac{1}{2}\\ V\text{ậy}B_{M\text{AX}}=\frac{29}{2}khix=\frac{1}{2}\)
Ta có: B = 14 + 2x - 2x2 => 2B = 2 . ( -2x2 + 2x + 14 ) => 2B = -4x2 + 4x + 28 => 2B = - (2x)2 + 2 . 2x - 1 + 29 => 2B = - [ (2x)2 - 2 . 2x + 1 ] + 29
=> 2B = - (2x + 1)2 + 29 \(\le\)29 => B \(\le\frac{29}{2}\)
Đẳng thức xảy ra khi: 2x - 1 = 0 => x = \(\frac{1}{2}\)
Vậy giá trị lớn nhất của B = \(\frac{29}{2}\)khi x = \(\frac{1}{2}\)
vì 2x^2>=0 với mọi x
=>-2x^2<=0 với mọi x
=>11-2x^2<=0 với mọi x
Dấu "=" xảy ra khi x=0
Vậy GTLN của biểu thức trên là 11 khi x=0
xin lỗi 11-2x^2<=11 chứ không phải <=0