K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

\(2A=-2x^2-2y^2+2xy+2x+2y=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)+2\)

\(=-\left(x-y\right)^2-\left(x-1\right)^2-\left(y-1\right)^2+2\le2\)

\(\Rightarrow GTLN.A=1\) khi \(x=y=1\)

12 tháng 2 2017

Mr Lazy sai òi, \(2A=-2x^2-2y^2+2xy+4x+4y=-\left(x-1\right)^2-\left(y-1\right)^2-\left(x-y\right)^2+8\le8\)

28 tháng 5 2017

giá trị D lớn nhất khi

x=1=y

k nha!!

.......

28 tháng 5 2017

giai tri D lon nhat khi x=1=y     nhe ban 

6 tháng 7 2015

\(A=\frac{7}{2}-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)-\left(y^2-2.\frac{1}{2}y+\frac{1}{4}\right)=\frac{7}{2}-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le\frac{7}{2}\)

=> GTLN của A=7/2 <=> x=y=1/2

\(B=4-\left(\frac{x^2}{2}-2.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}xy+\frac{y^2}{2}\right)-\left(\frac{1}{2}x^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}x+2\right)-\left(\frac{1}{2}y^2-2.\frac{1}{\sqrt{2}}.\frac{\sqrt{2}}{1}y+2\right)\)

\(=4-\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2-\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2-\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right)^2\le4\)

=> GTLN của B=4 <==> x=y=2

6 tháng 12 2021

toán này là toán lớp 9 mà

30 tháng 7 2018

a,Ta có: \(2A=4x^2+4xy+2y^2-4x+4y+4\)

\(=4x^2+2x\left(y-2\right)+\left(y-2\right)^2+y^2+8y+16-20\)

\(=\left(2x+y-2\right)^2+\left(y+4\right)^2-20\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\\\left(y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow2A\ge-20\Rightarrow A\ge-10\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)

Vậy ....

30 tháng 7 2018

c,Ta có:\(4C=4x^2+4xy+4y^2-12x-12y\)

\(=4x^2+2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+4y^2-12y\)

\(=\left(2x+y-3\right)^2+3\left(y^2-2y+1\right)-12\)

\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\)

Vì \(\left\{{}\begin{matrix}\left(2x+y-3\right)^2\ge0\\3\left(y-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow4C\ge-12\Rightarrow C\ge-3\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

2 tháng 7 2018

a, \(A=x^4-2x^3+2x^2-2x+3\)

\(=\left(x^4+2x^2+1\right)-\left(2x^3+2x\right)+2\)

\(=\left(x^2+1\right)^2-2x\left(x^2+1\right)+2\)

\(=\left(x^2+1\right)\left(x^2-2x+1\right)+2\)

\(=\left(x^2+1\right)\left(x-1\right)^2+2\)

Vì \(\hept{\begin{cases}x^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x^2+1\ge1\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}\left(x^2+1\right)\left(x-1\right)^2\ge0}\)

\(\Rightarrow A=\left(x^2+1\right)\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi x = 1

Vậy Amin = 2 khi x = 1

b, \(B=4x^2-2\left|2x-1\right|-4x+5=\left(4x^2-4x+1\right)-2\left|2x-1\right|+4=\left(2x-1\right)^2-2\left|2x-1\right|+4\)

đề sai ko

c, \(C=4-x^2+2x=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow C=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra khi x=1

Vậy Cmin = 5 khi x = 1

2 tháng 7 2018

2/

+) \(D=-x^2-y^2+x+y+3=-\left(x^2-x+\frac{1}{4}\right)-\left(y^2-y+\frac{1}{4}\right)+\frac{7}{2}=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\)

Vì \(\hept{\begin{cases}-\left(x-\frac{1}{2}\right)^2\le0\\-\left(y-\frac{1}{2}\right)^2\le0\end{cases}\Rightarrow-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2\le0}\Rightarrow D=-\left(x-\frac{1}{2}\right)^2-\left(y-\frac{1}{2}\right)^2+\frac{7}{2}\le\frac{7}{2}\)

Dấu "=" xảy ra khi x=y=1/2

Vậy Dmax=7/2 khi x=y=1/2

+) Đề sai

+)bài này là tìm min 

 \(G=x^2-3x+5=\left(x^2-3x+\frac{9}{4}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Dấu "=" xảy ra khi x=3/2

Vậy Gmin=11/4 khi x=3//2

16 tháng 8 2023

ko

16 tháng 8 2023

bt

16 tháng 8 2023

Đặt \(A=-x^2-y^2+xy+2x+2y\)

\(\Rightarrow2A=-2x^2-2y^2+2xy+4x+4y\)

\(=-\left(x^2-4x+4\right)-\left(y^2-y+4\right)-\left(x^2-2xy+y^2\right)+8\)

\(=8-\left(x-2\right)^2-\left(y-2\right)^2-\left(x-y\right)^2\)

16 tháng 8 2023

anh lm chi tiết hộ e ạ