Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x^4+2016}{x^4+1008}\) đạt GTNN khi \(x^4+1008\) đạt GTNN; đạt GTNN khi \(x^4+2016\) đạt GTLN
Lại có:
\(x^4\ge0\forall x\\ \Rightarrow x^4+1008\ge1008\forall x\)
\(\Rightarrow\) GTNN của \(x^4+1008=1008\) tại \(x=0\)
Thay \(x=0\) vào \(x^4+2016\), ta có:
\(0^4+2016=2016\)
\(\Rightarrow\) GTLN của: \(\dfrac{x^4+2016}{x^4+1008}=\dfrac{2016}{1008}=2\) tại \(x=0\)
Biểu thức B đạt giá trị nhỏ nhất khi:B=\(\frac{1}{\sqrt{x}+2016}\) voi \(\sqrt{x}\) =0 ta co B=\(\frac{1}{0+2016}\) =\(\frac{1}{2016}\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
a) \(A=\left|x+\frac{2}{3}\right|\ge0\)
Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)
b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)
Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)
c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)
Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)
Min F = 9
\(\Leftrightarrow x\ge5\)
Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3
Vậy GTNN của A là 0 khi x = -2/3
b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy GTNN của B là 1/3 khi x = 0
c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0
d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9
Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)
TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)
TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)
Vậy GTNN của F là 9 khi \(-4\le x\le5\)
dễ thôi đáp án bài này là 2