![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
= \(-2x^2-2.\frac{1,5.\sqrt{2}.x}{\sqrt{2}}-\frac{2.25}{2}+6.125\)
= \(6.125-\left(\sqrt{2}x-\frac{1.5}{\sqrt{2}}\right)^2\le6.125\forall x\)
=> GTLN của bt là 6.125 khi x=0.75
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm GTNN
A = x2 - 10x + 3 = ( x2 - 10x + 25 ) - 22 = ( x - 5 )2 - 22 ≥ -22 ∀ x
Dấu "=" xảy ra khi x = 5
=> MinA = -22 <=> x = 5
B = 3x2 + 7x - 2 = 3( x2 + 7/3x + 49/36 ) - 73/12 = 3( x + 7/6 )2 - 73/12 ≥ -73/12 ∀ x
Dấu "=" xảy ra khi x = -7/6
=> MinB = -73/12 <=> x = -7/6
Tìm GTLN
A = -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra khi x = 2/3
=> MaxA = -1 <=> x = 2/3
B = -2x2 - 3x + 7 = -2( x2 + 3/2x + 9/16 ) + 65/8 = -2( x + 3/4 )2 + 65/8 ≤ 65/8 ∀ x
Dấu "=" xảy ra khi x = -3/4
=> MaxB = 65/8 <=> x = -3/4
![](https://rs.olm.vn/images/avt/0.png?1311)
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=-3x^2+2x-5\)
\(=-\left(3x^2-2x+5\right)\)
\(=-\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{11}{3}\right]\)
\(=-\left[\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2+\frac{11}{3}\right]\)
\(=-\left(\sqrt{3}x-\frac{2}{\sqrt{3}}\right)^2-\frac{11}{3}\le\frac{-11}{3}\)
Vậy \(D_{max}=\frac{-11}{3}\Leftrightarrow\sqrt{3}x-\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{2}{3}\)
bài này làm đúng nhưng mà sai xíu là \(\frac{2}{\sqrt{3}}\)thành \(\frac{1}{\sqrt{3}}\)và \(-\frac{11}{3}\)thành \(-\frac{14}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)
-3x2+2x-5
= -3(x2- \(\frac{2}{3}\)+\(\frac{5}{3}\))
= -3[x2-2.x.\(\frac{2}{6}\)+(\(\frac{2}{6}\))2-\(\frac{4}{36}\)+\(\frac{5}{3}\)]
= -3(x-\(\frac{2}{6}\))2-\(\frac{14}{3}\)bé hơn hoặc bằng -\(\frac{14}{3}\)
Vậy GTLN của biểu thức bằng -\(\frac{14}{3}\)