Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 9x2 + 12x + 15
= (3x)2 + 2.3x.2 + 4 + 11
= (3x + 2)2 + 11
Mà (3x + 2)2 \(\ge0\forall x\)
Nên (3x + 2)2 + 11 \(\ge11\forall x\)
Vậy Bmin = 11 dấu "=" sảy ra khi và chỉ khi x = \(-\frac{2}{3}\)
Ta có : A = x2 - 4x - 6
= x2 - 4x + 4 - 10
= (x - 2)2 - 10
Mà (x - 2)2 \(\ge0\forall x\)
=> (x - 2)2 - 10 \(\ge-10\forall x\)
Vậy Amin = -10 dấu "=" sảy ra khi và chỉ khi x = 2
a) A = -x2 + 2x + 3
= -(x2 - 2x - 3)
= -(x2 - 2x + 1 - 4)
= -(x - 1)2 + 4 < = 4
GTLN của A là 4
b) B = -10x - x2 + 1
= -(x2 + 10x - 1)
= -(x2 + 2x.5 + 25 - 26)
= -(x + 5)2 + 26 < = 26
GTLN của B là 26
c) C = x - x2
= -(x2 - x)
= -(x2 - 2x.(1/2) + 1/4 - 1/4)
= -(x - 1/2)2 + 1/4 < = 1/4
GTLN của C là 1/4
d) D = 3x - 3x2 - 8
= -(3x2 - 3x + 8
= -(x2 - 2x.(3/2) + 9/4 + 2x2 + 23/4)
= -(x - 3/2)2 - 2x2 - 23/4 < = - 23/4
GTLn của D là -23/4
a) A = x2 - 6x + 13 = x2 - 2.x.3 + 33 +4 = (x-3)2 + 4 >= 4 suy ra minA=4
mấy câu kia giải tương tự
* Câu A :
\(A=-x^2+6x-7\)
\(-A=x^2-6x+7\)
\(-A=\left(x^2-6x+9\right)-2\)
\(-A=\left(x-3\right)^2-2\ge-2\)
\(A=-\left(x-3\right)^2+2\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTLN của \(A\) là \(2\) khi \(x=3\)
* Câu B :
\(B=-3x^2-x+4\)
\(-3B=9x^2+3x-12\)
\(-3B=\left(9x^2+3x+\frac{1}{4}\right)-\frac{49}{4}\)
\(-3B=\left(3x+\frac{1}{2}\right)^2-\frac{49}{4}\ge-\frac{49}{4}\)
\(B=-3\left(3x+\frac{1}{2}\right)^2+\frac{147}{4}\le\frac{147}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-3\left(3x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(3x+\frac{1}{2}=0\)
\(\Leftrightarrow\)\(3x=\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{1}{6}\)
Vậy GTLN của \(B\) là \(\frac{147}{4}\) khi \(x=\frac{1}{6}\)
Câu C làm tương tự
Chúc bạn học tốt ~
\(C=4x^2-4xy+y^2+4x^2-16x+16+1\)
\(=\left(2x-y\right)^2+(2x-4)^2+1\ge1\forall x;y\in R\)
Dấu "=" xảy ra<=> 2x-y=0 và 2x-4=0
<=>2x-y=0 và x=2 <=>y=4 và x=
Vậy....
\(B=3x^2-12x+16\)
\(=x^2-12x+36+2x^2-20\)
\(=\left(x-6\right)^2+2x^2-20\ge-20\forall x\in R\)
Dấu "=" xảy ra <=> \(\left(x-6\right)^2=0\)và \(2x^2=0\)
<=>x1 =6 và x2 =0
Vậy....
a, \(A=4-2x^2\le4\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN A là 4 khi x = 0
b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)
\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5
Vậy GTLN B là 20 khi x = 5
c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)
\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)
Vậy GTLN C là -17/7 khi x = 1/2
d, tương tự
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)
Vậy MIN A = 1 khi x = 4
b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)
Vậy MIN T = 3 khi x = 2
c) \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\)
Vậy MIN H = -4 khi x = -1
d) \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)
Vậy MIN E = 8 khi x = y = 2
e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy MIN K = 1 khi x = 1/2; y = 1
f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy MIN M = 5/6 khi x = -1/3