
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=x^2+8x+12\)
\(=x^2+2.x.4+16-4\)
\(=\left(x+4\right)^2-4\le-4\)
Vậy MIN A = \(-4\Leftrightarrow x+4=0\Rightarrow x=-4\)

Ta co : 8x+12/x^2+4
Xet tu , ta co :
8x+12
=x^4+8x+16-x^4-4
=(x^2+4)^2-(x^4+4)
Thay vao bieu thuc tren ta co :
[(x^2+4)^2-(x^4+4)]/(x^2+4)
=(x^2+4)^2/(x^2+4)-(x^4+4)/(x^2+4)
=1-(x^4+4)/(x^2+4)
Ma : -(x^4+4)/(x^2+4) < 0
=> 1-(x^4+4)/(x^2+4) < 1
Hay : Max cua bieu thuc la 1

Để x2 - 8x + 12 không âm thì x2 - 8x + 12 ≥ 0
<=> ( x - 2 )( x - 6 ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-2\ge0\\x-6\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge6\end{cases}}\Leftrightarrow x\ge6\)
2. \(\hept{\begin{cases}x-2\le0\\x-6\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\le6\end{cases}}\Leftrightarrow x\le2\)
Vậy với \(\orbr{\begin{cases}x\ge6\\x\le2\end{cases}}\)thì x2 - 8x + 12 không âm
Theo bài ra ta có : \(x^2-8x+12\ge0\)
\(\Leftrightarrow\left(x-6\right)\left(x-2\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\x-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\ge2\end{cases}\Leftrightarrow}x\ge6}\)
TH2 : \(\hept{\begin{cases}x-6\le0\\x-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\le2\end{cases}\Leftrightarrow x\le2}}\)
Vậy với giá trị \(x\le2;x\ge6\)thì biểu thức trên ko âm

\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)
\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)
Vậy GTLN là 4

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)
Dấu \("="\Leftrightarrow x=2\)
\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x=1\)
\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)
Dấu \("="\Leftrightarrow x=-1\)
1.
$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$
Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow A\geq 2.0-7=-7$
Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$
2.
$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$
Vậy $B_{\min}=-0,25$ khi $x=-1,5$
3.
$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$
Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$
4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất
Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

A\(=2x^2-8x+1\)
=2x(x-4)+1≥1
Min A=1 ⇔x=4
B=\(x^2+3x+2\)
\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)≥\(-\dfrac{1}{4}\)
Min B=-1/4⇔x=-3/2