K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^2+8x+12\)

\(=x^2+2.x.4+16-4\)

\(=\left(x+4\right)^2-4\le-4\)

Vậy MIN A = \(-4\Leftrightarrow x+4=0\Rightarrow x=-4\)

a.x<1/2

b. x<=1/2

c.x>8/5

31 tháng 1 2017

Ta co : 8x+12/x^2+4

Xet tu , ta co :

8x+12

=x^4+8x+16-x^4-4 

=(x^2+4)^2-(x^4+4)

Thay vao bieu thuc tren ta co : 

[(x^2+4)^2-(x^4+4)]/(x^2+4)

=(x^2+4)^2/(x^2+4)-(x^4+4)/(x^2+4)

=1-(x^4+4)/(x^2+4)

Ma : -(x^4+4)/(x^2+4) < 0

=> 1-(x^4+4)/(x^2+4) < 1

Hay : Max cua bieu thuc la 1 

4 tháng 2 2017

thien ty tfbos, mình nghĩ là bạn sai rồi

30 tháng 4 2021

Để x2 - 8x + 12 không âm thì x2 - 8x + 12 ≥ 0

<=> ( x - 2 )( x - 6 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-2\ge0\\x-6\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\ge6\end{cases}}\Leftrightarrow x\ge6\)

2. \(\hept{\begin{cases}x-2\le0\\x-6\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x\le6\end{cases}}\Leftrightarrow x\le2\)

Vậy với \(\orbr{\begin{cases}x\ge6\\x\le2\end{cases}}\)thì x2 - 8x + 12 không âm 

30 tháng 4 2021

Theo bài ra ta có : \(x^2-8x+12\ge0\)

\(\Leftrightarrow\left(x-6\right)\left(x-2\right)\ge0\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\x-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\ge2\end{cases}\Leftrightarrow}x\ge6}\)

TH2 : \(\hept{\begin{cases}x-6\le0\\x-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\le2\end{cases}\Leftrightarrow x\le2}}\)

Vậy với giá trị \(x\le2;x\ge6\)thì biểu thức trên ko âm 

29 tháng 12 2016

\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)

\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)

Vậy GTLN là 4

28 tháng 12 2016

GTLN của P là 4

11 tháng 9 2021

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

10 tháng 9 2021

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

10 tháng 9 2021

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2