Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
\(\left(x+y\right)=3\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow x^2+y^2+2xy=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2.\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=3.\left(5-2\right)=9\)
Câu 6:
\(\left(x-2016\right)^2\ge0\) với mọi x
\(\left(x+2017\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-2016\right)^2+\left(y+2017\right)^2=0\) Khi \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\) và \(\left(x+2017\right)^2=0\Leftrightarrow x=-2017\)
\(\Rightarrow x+y=2016-2017=-1\)
Câu 7:
\(D=\left(x+y\right)^2-6\left(x+y\right)-15=\left(-9\right)^2-6.\left(-9\right)-15=120\)
\(Q=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4.3+1=-2\)
câu 5:
x2+y2=5 -> x2+2xy+ y2-2xy=5
-> (x+y)2 - 2xy = 5 -> 32 - 2xy = 5 ->xy = 2
có x3+ y3= (x+y).(x2-xy+y2)
= 3.( 5- 2)= 9
vậy x3+ y3 =9
câu 6:
( x - 2016)2 ≥ 0 dấu = xảy ra khi x=2016
( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi y = 2016
-> ( x - 2016)2 + ( y + 2017 )2 ≥ 0 dấu bằng xảy ra khi x=2016, y = 2017
-> x+y=2016+2017=4033
câu 7:
a,
D = x2 +2xy +y2 - 6x - 6y -15= (x2 +2xy +y2) - (6x + 6y) -15= (x+y)2 - 6(x+y) - 15
D= (-9)2 -6.(-9)-15=120
b,
Q = x2 + 2xy + y2 - 4x - 4y +1 = (x2 + 2xy + y2) - (4x + 4y) +1
Q= (x+y)2-4.(x+y)+1
Q=32- 4.3 +1= -2
\(x^2-2xy+y^2+3x-3y-4=0\)
\(\Leftrightarrow\left(x-y\right)^2+3\left(x-y\right)-4=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-y+3\right)-4=0\)
Thay y = 3 vào biểu thức trên ta được :
\(x\left(x-3\right)-4=0\)
\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\Leftrightarrow x=4;x=-1\)
Vậy với y = 3 thì x = 4 ; x = -1
Thay y = 3 vào bthuc ta được :
x2 - 6x + 9 + 3x - 9 - 4 = 0
<=> x2 - 3x - 4 = 0
<=> ( x + 1 )( x - 4 ) = 0
<=> x = -1 hoặc x = 4
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
\(A=x^2+y^2-xy^2-x^2y+2xy-5\)
\(=\left(x+y\right)^2-xy\left(y+x\right)-5\)
\(=2^2-2xy-5=-\left(2xy+1\right)\)
Trả lời:
\(A=x^2+y^2-x^2y-xy^2+2xy-5\)
\(A=\left(x^2+2xy+y^2\right)-xy.\left(x+y\right)-5\)
\(A=\left(x+y\right)^2-xy.\left(x+y\right)-5\)
\(A=2^2-xy.2-5\)
\(A=4-2xy-5\)
\(A=-1-2xy\)
\(A=-\left(1+2xy\right)\)
Học tốt
Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước
Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) - 4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1 (1)
Thay x+y = 3 vào 1, có:
3^2 - 4.3 + 1 = 9-12 + 1 = -2
Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1 vs x+ y = 3 là -2
\(=\left(x-y\right)^2+x=\left(25-5\right)^2+25=20^2+25=400+25=425\)
x2-2xy+y2+x
= (x-y)2+ x
thay số:
= (25-5)2+ 25
= 202+25
= 400+25
= 425
Vậy biểu thức có giá trị là 425 khi x=25 và y=5.
( x - y )3 - x2 + 2xy - y2
= ( x - y )3 - ( x2 - 2xy + y2 )
= ( x - y )3 - ( x - y )2
Với x - y = 5 => Giá trị biểu thức = 53 - 52 = 100