![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x\left(2x+1\right)-4xy+y\left(2y-1\right)+2000.\)
\(2x^2+x-4xy+2y^2-y+2000\)
\(2\left(x-y\right)^2+x-y+2000=2.25+5+2000\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
a.
\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)
\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)
b.
\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)
\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)
\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)
Bài 1:
\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)
\(=-x+1=-(x-1)=-(999-1)=-998\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{y}=5+1=6\)
\(\Leftrightarrow\frac{2}{x}=6\Rightarrow x=\frac{2}{6}=\frac{1}{3}\)
\(\frac{1}{x}+\frac{1}{y}-\left(\frac{1}{x}-\frac{1}{y}\right)=5-1=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{x}+\frac{1}{y}=4\)
\(\Leftrightarrow\frac{2}{y}=4\Rightarrow y=\frac{2}{4}=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có 2^x=8^y+1\(\Leftrightarrow\)x=3y+3
lại có 9^y=3^x-9\(\Leftrightarrow\)2y=x-9
do đó x=21;y=6
phân tích điều kiện đề bài ra rồi tính x và y. xong lấy x+y=27 (x=21,y=6)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2013}=\frac{1}{x+y+z}\Rightarrow\frac{yz+xz+xy}{xyz}=\frac{1}{x+y+z}\Rightarrow\left(yz+xz+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz+xyz=xyz\)
\(\Rightarrow y^2z+yz^2+x^2z+xz^2+x^2y+xy^2+2xyz=0\)
\(\Rightarrow\left(x^2y+x^2z+xy^2+xyz\right)+\left(y^2z+xz^2+y^2z+xyz\right)=0\)
\(\Rightarrow x\left(xy+xz+y^2+yz\right)+z\left(yz+xz+y^2+xy\right)=0\)
\(\Rightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=\left(x+z\right)\left(x\left(y+z\right)+y\left(y+z\right)\right)=\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\Rightarrow x^3+y^3=0\\y+z=0\Rightarrow y^5+z^5=0\\x+z=0\Rightarrow z^7+x^7=0\end{cases}}\)
\(\Rightarrow A=\left(x^3+y^3\right)\left(y^5+z^5\right)\left(z^7+x^7\right)=0\)
\(\hept{\begin{cases}\frac{1}{x}=a\\\frac{1}{y}=b\end{cases}}\)
\(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}\Rightarrow\hept{\begin{cases}a=3\\b=2\end{cases}\Rightarrow ab=6}}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=a.b.\left(x+y\right)=6\left(x+y\right)=5\Rightarrow\left(x+y\right)=\frac{5}{6}\)