Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.
Thay x=-2 và B ta có :
\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)
b) Rút gọn :
\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)
\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
Xấu nhỉ ??
a) \(ĐKXĐ:\hept{\begin{cases}x^3+1\ne0\\x^3-2x^2\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne2\end{cases}}\)(chỗ chữ và là do OLM thiếu ngoặc 4 cái nên mk để thế nha! trình bày thì kẻ thêm 1 ngoặc nưax)
\(Q=1+\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right):\frac{x^3-2x^2}{x^3-x^2+x}\)
\(=1+\left[\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right]:\frac{x^2\left(x-2\right)}{x\left(x^2-x+1\right)}\)
\(=1+\frac{\left(x+1\right)+\left(x+1\right)-2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{x^2-x+1}{x\left(x-2\right)}\)
\(=1+\frac{4x-2x^2}{x+1}.\frac{1}{x\left(x-2\right)}\)
\(=1-\frac{2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1-\frac{2}{x+1}=\frac{x-1}{x+1}\)
b, Với \(x\ne0;x\ne-1;x\ne2\)Ta có:
\(|x-\frac{3}{4}|=\frac{5}{4}\)
*TH1:
\(x-\frac{3}{4}=\frac{5}{4}\Rightarrow x=2\)(ko thảo mãn)
*TH2:
\(x-\frac{3}{4}=-\frac{5}{4}\Rightarrow x=-\frac{1}{2}\)
\(\Rightarrow Q=\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}=-3\)
c,
\(Q=\frac{x-1}{x+1}=1-\frac{2}{x+1}\)
Để Q nguyên thì x+1 phải thuộc ước của 2!! tự làm tiếp dễ rồi!!
mk có cách giải ngắn gọn hơn nì. cái này sử dụng máy tính sẽ dể dàng hơn.
\(x+\frac{1}{x}=3\)
=> x = 2,618033989
Thay x = 2,618033989 vào \(x^3+\frac{1}{x^3}\)
Ta được: \(\left(\text{2,618033989}\right)^3+\frac{1}{\text{(2,618033989)^3}}=18\)
Theo bài ra , ta có :
\(x+\frac{1}{x}=3\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2=9\)
\(\Leftrightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=9\)
\(\Leftrightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=7\)
Ta lại có :
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-x.\frac{1}{x}+\frac{1}{x^2}\right)=\left(x+\frac{1}{x}\right).\left(x^2+\frac{1}{x^2}-1\right)\)(1)
Thay \(x+\frac{1}{x}=3\) và \(\left(x^2+\frac{1}{x^2}\right)=7\)vào (1) ta được
\(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)=3.\left(7-1\right)=3.6=18\)
Vậy \(x^3+\frac{1}{x^3}=18\)
Chúc bạn học tốt =))