Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)
\(\Rightarrow101x>0\)
\(\Rightarrow x>0\)
\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)
\(\Rightarrow x=\frac{50.101}{101}\)
\(\Rightarrow x=50\)
Vậy x = 50
Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x 100 phân số
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(100x+\frac{1+2+...+100}{101}=101x\)
\(101x-100x=\frac{5050}{101}\)
\(x=50\)
Vậy x = 50
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
\(KĐ:101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)
\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)
\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)
\(x=\frac{101.100:2}{101}\)
\(x=50\)
a ) \(3-4.\left|5-6x\right|=7\)
\(\Leftrightarrow4.\left|5-6x\right|=-4\)
\(\Leftrightarrow\left|5-6x\right|=-1\)
\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )
b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)
=> \(4x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)
=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)
=> \(3x+\frac{31}{10}=4x\)
=> \(4x-3x=\frac{31}{10}\)
=> \(x=\frac{31}{10}\)
Vậy \(x=\frac{31}{10}\)
c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
Vậy x = 50
Do \(\left|a\right|\ge0\) nên:
a) \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\ge0\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\) (100 số hạng x)
\(\Leftrightarrow100x+5050=101x\Leftrightarrow201x=5050\Leftrightarrow x=\frac{5050}{201}\)
b) Đề sai nhé!
a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|
\(\Rightarrow\)\(\frac{x}{3}\)= \(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)
Với \(\frac{x}{3}\) = \(\frac{33}{100}\)
\(\Rightarrow\)100x= 33.3
\(\Rightarrow\)100x=99
\(\Rightarrow\)x=\(\frac{99}{100}\)
Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)
\(\Rightarrow\)100x=-33.3
\(\Rightarrow\)100x=-99
\(\Rightarrow\)x=\(\frac{-99}{100}\)
Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)
b, \(\frac{4}{1.5}\)+ \(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)
\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|
\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)
Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)
\(\Rightarrow\)(5x-4).101=100.101
\(\Rightarrow\)505x-404=10100
\(\Rightarrow\)505x=10504
\(\Rightarrow\)x=\(\frac{104}{5}\)
Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)
\(\Rightarrow\)(5x-4). 101=-100.101
\(\Rightarrow\)505x-404=-10100
\(\Rightarrow\)505x=-9696
\(\Rightarrow\)x=\(\frac{-96}{5}\)
Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)
Ta có:
\(S=\left(\frac{3}{2}-\frac{2}{2^2}\right)\left(\frac{4}{3}-\frac{2}{3^2}\right)\left(\frac{5}{4}-\frac{2}{4^2}\right)...\left(\frac{101}{100}-\frac{2}{100^2}\right)\)
\(=\frac{4}{2^2}.\frac{10}{3^2}.\frac{18}{4^2}....\frac{100.101-2}{101^2}\)
\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{100.103}{101^2}\)
\(=\frac{1.4}{2^2}.\frac{2.5}{3^2}.\frac{3.6}{4^2}.\frac{4.7}{5^2}...\frac{98.101}{99^2}\frac{99.102}{100^2}\frac{100.103}{101^2}\)
\(=\frac{101.102.103}{1.2.3}\)