K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

bài 2 nhé, bài 1 không biết làm.

cách giải: hơi dài nhưng đọc 1 lần để sử dụng cả đời =))

+ bỏ dấu căn bằng cách phân tích biểu thức trong căn thành 1 bình phương

- nhắm đến hằng đẳng thức số 1 và số 2.

+ đưa về giá trị tuyệt đối, xét dấu để phá dấu giá trị tuyệt đối

* nhận xét: +Vì đặc trưng của 2 hđt được đề cập. số hạng không chứa căn sẽ là tổng của 2 bình phương \(\left(A^2+B^2\right)\) số hạng chứa căn sẽ có dạng \(\pm2AB\)

=> ta sẽ phân tích số hạng chứa căn để tìm A và B

+ nhẩm bằng máy tính, tìm 2 số hạng:

thử lần lượt các trường hợp, lấy vd là câu c)

\(2AB=12\sqrt{5}=2\cdot6\sqrt{5}\)

\(\Rightarrow AB=6\sqrt{5}\)

- đầu tiên xét đơn giản với B là căn 5 => A= 6

\(A^2+B^2=36+5=41\) (41 khác 29 => loại)

- xét \(6\sqrt{5}=2\cdot3\sqrt{5}\)

tương ứng A= 2; B = 3 căn 5

\(A^2+B^2=4+45=49\) (loại)

- xét \(6\sqrt{5}=3\cdot2\sqrt{5}\)

Tương ứng A= 3 ; B= 2 căn 5

\(A^2+B^2=9+20=29\) (ơn giời cậu đây rồi!!)

Vì tổng \(A^2+B^2\) là số nguyên nên ta nghĩ đến việc tách 2AB ra các thừa số có bình phương là số nguyên (chứ không nghĩ đến phân số)

+ Tìm được A=3, B=2 căn 5 sau đó viết biểu thức dưới dạng bình phương 1 tổng/hiệu như sau:

\(\sqrt{29-12\sqrt{5}}-\sqrt{29+12\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(2\sqrt{5}+3\right)^2}\)

sau đó bạn làm tương tự như 2 câu mẫu bên dưới

* Chú ý nên xếp số lớn hơn là số bị trừ, để khỏi bị nhầm và khỏi mất công xét dấu biểu thức khi phá dấu giá trị tuyệt đối

a) \(\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3+\sqrt{5}\right|+\left|3-\sqrt{5}\right|=3+\sqrt{5}+3-\sqrt{5}=6\)b) \(\sqrt{6+4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|+\left|2-\sqrt{2}\right|=2+\sqrt{2}+2-\sqrt{2}=4\)

21 tháng 7 2018

a ) \(\sqrt{3+2\sqrt[]{2}}\) - \(\sqrt{2}\)

= \(\sqrt{\left(1+\sqrt{2}\right)^2}\) -\(\sqrt{2}\)

= 1 + \(\sqrt{2}\) - \(\sqrt{2}\)

=1

b) \(\sqrt{16-6\sqrt{7}}\)-\(2\sqrt{7}\)

= \(\sqrt{\left(3-\sqrt{7}\right)^2}\)-\(2\sqrt{7}\)

= 3 - \(\sqrt{7}\)-\(2\sqrt{7}\)

=3 - 3\(\sqrt{7}\)

c )\(\sqrt{30+12\sqrt{6}}\) +\(\sqrt{30-12\sqrt{6}}\)

= \(\sqrt{6\left(5+2\sqrt{6}\right)}\) + \(\sqrt{6\left(5-2\sqrt{6}\right)}\)

=\(\sqrt{6}\) (\(\sqrt{5+2\sqrt{6}}\) + \(\sqrt{5-2\sqrt{6}}\) )

=\(\sqrt{6}\) [\(\sqrt{\left(1+\sqrt{6}\right)^2}\) +\(\sqrt{\left(1-\sqrt{6}\right)^2}\)

=\(\sqrt{6}\) (1 + \(\sqrt{6}\) + \(\sqrt{6}\) -\(1\))

= 2 . 6

=12

d)\(\sqrt{9-4\sqrt{5}}\) -\(\sqrt{5}\)

=\(\sqrt{\left(2-\sqrt{5}\right)}^2\) -\(\sqrt{5}\)

=\(\sqrt{5}\) -\(2\) -\(\sqrt{5}\)

=2

e ) \(\sqrt{\left(-2\right)^6}\) \(+\) \(\sqrt{\left(-3\right)}^4\)

= \(\left|\left(-2\right)^3\right|\) + \(\left|\left(-3\right)^2\right|\)

=8 + 9

=17

1 tháng 8 2018

\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)

\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)

\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)

\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

1 tháng 8 2018

a)

=\(\sqrt{18-2.3\sqrt{2}.1+1}\)

\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)

\(=3\sqrt{2}-1\)

b)

=\(\sqrt{12+2.2\sqrt{3}.3+9}\)

=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)

=\(2\sqrt{3}+3\)

c)

=\(\sqrt{25-2.5.4\sqrt{2}+32}\)

=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)

=\(4\sqrt{2}-5\)

d)

\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)

e)

\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)

g)

\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

26 tháng 7 2018

\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)

Y
4 tháng 7 2019

\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)

\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)

\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)

\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)

\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)

\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)

\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)

9 tháng 8 2018

Bài 1 bạn nhóm , trục như thường nhé :D

Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)

\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)

\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)

\(D=-\sqrt{6}\left(do:D< 0\right)\)

9 tháng 8 2018

cảm ơn bn nhé!!! yeu

18 tháng 6 2019

a)

\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1-\sqrt{5}+1\\ =2\)

b) Sửa đề:

\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}-2\sqrt{6}\\ =\sqrt{\left(\sqrt{6}+1\right)^2}+\sqrt{\left(\sqrt{6}-1\right)^2}-2\sqrt{6}\\ =\sqrt{6}+1+\sqrt{6}-1-2\sqrt{6}\\ =0\)

c)

\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}-2\sqrt{5}\\ =\sqrt{9+2\sqrt{20}}+\sqrt{9-2\sqrt{20}}-2\sqrt{5}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}-2\sqrt{5}\\ =\sqrt{5}+2+\sqrt{5}-2-2\sqrt{5}\\ =0\)

27 tháng 7 2017

a/ \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=7-4\sqrt{3}+7+4\sqrt{3}=14\)

27 tháng 7 2017

a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}=\dfrac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\dfrac{14}{49-48}=\dfrac{14}{1}=14\)

b) \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}+2}\right)-\dfrac{12}{3-\sqrt{6}}\)

\(=\left(\dfrac{15\left(\sqrt{6}+2\right)+4\left(\sqrt{6}+1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}\right)-\dfrac{12}{3-\sqrt{6}}=\dfrac{15\sqrt{6}+30+4\sqrt{6}+4}{6+2\sqrt{6}+\sqrt{6}+2}-\dfrac{12}{3-\sqrt{6}}\) \(=\dfrac{34+19\sqrt{6}}{8+3\sqrt{6}}-\dfrac{12}{3-\sqrt{6}}=\dfrac{\left(34+19\sqrt{6}\right)\left(3-\sqrt{6}\right)-12\left(8+3\sqrt{6}\right)}{\left(8+3\sqrt{6}\right)\left(3-\sqrt{6}\right)}\)

\(=\dfrac{102-34\sqrt{6}+57\sqrt{6}-114-96-36\sqrt{6}}{24-8\sqrt{6}+9\sqrt{6}-18}=\dfrac{-108-13\sqrt{6}}{6+\sqrt{6}}\)

c) \(\sqrt{2+\sqrt{3}}+\sqrt{2+\sqrt{3}}=2\sqrt{2+\sqrt{3}}=\sqrt{2}.\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

câu này mk cảm thấy đề sai thì phải ; mà nếu o phải đề sai thì lời giải đó nha

16 tháng 5 2019

câu b:

(\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\))^2

\(=\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)\)\(-2\sqrt{5+2\sqrt{6}}\sqrt{5-2\sqrt{6}}\)

\(=4\sqrt{6}-2\sqrt{\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)}\)

\(=4\sqrt{6}-2\sqrt{5^2-\left(2\sqrt{6}\right)^2}\)

\(=4\sqrt{6}-2\sqrt{25-24}=4\sqrt{6}-2\)

mấy câu khác tương tự