Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thích làm mỗi bài 3 vi các bai khac vua de, vua dai viet mệt
3) 3n : 3n-1 = 3n-n+1 = 3
Số nguyên n thỏa mãn đẳng thức -81/(-3)^n =-243 <=> (-3)^n x (-243) = -81 <=> (-3)^n x (-3)^5 = (-3)^4
<=> (-3)^n = (-3)^4 : (-3)^5 <=> (-3)^n = (-3)^4-5 <=> (-3)^n = (-3)^(-1) => n=-1.
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
xét n tích a1a2+a2a3+...+ana1, mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng =0 nên số tích có giá trị 1 bằng số tích có giá trị -1 và đều = n/2 => n chia hết cho 2
bây giờ ta chứng minh rằng số tích có giá trị bằng -1 cũng là số chẵn
thật vậy xét
A=(a1.a2)(a2.a3)...(an-1.an) (an.a-1)
ta thấy A =a1^2.a2^2....an^2 nên A>0 , chứng tỏ số tích có giá trị -1 cũng là số chẵn tức là n/2 là số chẵn , do đó n chia hết cho 4
tick nha
\(\frac{27^{n+2}}{3^{2n+4}}=3^4\)
=> 27n + 2 : 32n + 4 = 34
=> (33)n + 2 : 32n + 4 = 34
=> 33n + 6 : 32n + 4 = 34
=> 33n + 6 - 2n - 4 = 34
=> 3n + 2 = 34
=> n + 2 = 4
=> n = 2
Vậy n = 2 là giá trị cần tìm