Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét đa thức g(x) = f(x) - 10x \(\Rightarrow\)bậc của đa thức g(x) bằng 4
Từ giả thiết suy ra g(1) = g(2) = g(3) = 0
Mà g(x) có bậc bốn nên \(g\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)(a là số thực bất kì)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)
\(\Rightarrow\hept{\begin{cases}f\left(8\right)=7.6.5.\left(8-a\right)+80\\f\left(-4\right)=\left(-5\right).\left(-6\right).\left(-7\right).\left(-4-a\right)-40\end{cases}}\)
\(\Rightarrow f\left(8\right)+f\left(-4\right)=5.6.7\left(8-a+4+a\right)+40\)
\(=2520+40=2560\)
Vậy \(f\left(8\right)+f\left(-4\right)=2560\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x=9\Rightarrow\sqrt{x}=3\Rightarrow A=\frac{3+2}{3-5}=\frac{5}{-2}=-\frac{5}{2}\\ \)
\(B=\frac{3}{\sqrt{x}+5}+\frac{20-2\sqrt{x}}{x-25}=\frac{3.\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}+\frac{20-2\sqrt{x}}{\left(x+\sqrt{5}\right).\left(x-\sqrt{5}\right)}\)
\(=\frac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{\sqrt{x}+5}{\left(\sqrt{x}+5\right).\left(\sqrt{x}-5\right)}=\frac{1}{\sqrt{x}-5}\)
\(A=B.\left|x-4\right|\Leftrightarrow\left|x-4\right|=A:B=\frac{\sqrt{x}+2}{\sqrt{x}-5}:\frac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Rightarrow\left(x-4\right)^2=\left(\sqrt{x}+2\right)^2\Leftrightarrow x^2-8x+16=x+4\sqrt{x}+4\)
\(\Leftrightarrow x^2-9x-4\sqrt{x}+12=0\Leftrightarrow x.\left(x-9\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x.\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)-4.\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x\sqrt{x}+3x-4\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\left(x\sqrt{x}-x\right)+\left(4x-4\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(x.\left(\sqrt{x}-1\right)+4.\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(x+4\sqrt{x}+4\right)=0\Leftrightarrow\left(\sqrt{x}-3\right).\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-3=0\\\sqrt{x}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}}\)(Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\left(\sqrt{x}+2\right)^2\ge4>0\))
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét pt tọa độ giao điểm:
X²=(m+4)x-2m-5
<=> -x²+(m+4)x-2m-5
a=-1. b= m+4. c=2m-5
Để pt có 2 No pb =>∆>0
=> (m+4)²-4×(-1)×2m-5>0
=> m² +2×m×4+16 +8m-20>0
=> m²+9m -2>0
=> x<-9 và x>0
![](https://rs.olm.vn/images/avt/0.png?1311)
a) f(5) = 2; f(1) = 0; f(0) không tồn tại; f(-1) không tồn tại.
b) Để hàm số được xác định thì \(x-1\ge0\Leftrightarrow x\ge1\)
c) Gọi x0 là số bất kì thỏa mãn \(x\ge1\). Khi đó ta có:
\(h\left(x_0\right)=f\left[\left(x_0+1\right)-1\right]-f\left(x_0-1\right)=\sqrt{x_0}-\sqrt{x_0-1}\)
\(h\left(x_0\right)\left[f\left(x_0+1\right)+f\left(x_0\right)\right]=\left(\sqrt{x_0}-\sqrt{x_0-1}\right)\left(\sqrt{x_0}+\sqrt{x_0-1}\right)=x_0-\left(x_0-1\right)=1>0\)
Vì \(\sqrt{x_0}+\sqrt{x_0-1}>0\Rightarrow h\left(x_0\right)>0\)
Vậy thì với các giá trị \(x\ge1\) thì hàm số đồng biến.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(B=\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}\left(x-\sqrt{x}\right)-x\sqrt{x}\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\) = \(\dfrac{x\sqrt{x}-x-x\sqrt{x}+x^2}{\sqrt{x}-x}=\dfrac{x^2-x}{\sqrt{x}-x}\)
c) \(C=\dfrac{x+2\sqrt{x}}{\sqrt{x}-x}-\dfrac{x\sqrt{x}}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)-x\sqrt{x}\left(\sqrt{x}-x\right)}{\left(\sqrt{x}-x\right)\left(\sqrt{x}+1\right)}=x+2\sqrt{x}-x\sqrt{x}\)
\(d,D=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\) \(\dfrac{\left(x+2\sqrt{x}\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+7\sqrt{x}-2}{\sqrt{x}+2}\)
e) \(E=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2\sqrt{x}-24}{\sqrt{x}+3}\)
F) F = \(\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}=\dfrac{3\left(\sqrt{x}-5\right)+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{23-2\sqrt{x}}{\sqrt{x}+5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự tìm ĐKXĐ.
a/ \(\sqrt{4-5x}=12\Rightarrow4-5x=144\Rightarrow x=-28\)
b/ \(10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
\(\Rightarrow\sqrt{3x}=4\sqrt{6}\Rightarrow\sqrt{x}=4\sqrt{2}\)
\(\Rightarrow x=32\)
c/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
d/ \(\sqrt{\left(x-3\right)\left(x+3\right)}-3\sqrt{x-3}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=6\end{matrix}\right.\)
e/ \(\sqrt{\frac{4x+3}{x+1}}=3\Leftrightarrow\frac{4x+3}{x+1}=9\)
\(\Rightarrow4x+3=9x+9\Rightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)
f/ \(\sqrt{x-2}\le3\Rightarrow x-2\le9\Rightarrow2\le x\le11\)
Thay x0 = −5 vào hàm số y = f(x) = 4 5 x 2
ta được f(−5) = 4 5 .(−5)2 = 20
Đáp án cần chọn là: A