K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Khi x = - 1; y = 1 thì xy = (-1).1= -1

Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6

= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6

= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6

= -1 – 1 + (-1) – 1 + (-1) – 1

= - 6

Chọn đáp án D

3 tháng 8 2021

D đúng nha!

13 tháng 7 2019

a) x^2 -5x tại x=1,x=-1,x=1 phần 2

Thay x=1 =>\(1^2-5.1=1-5=-4\)

Thay \(x=-1\Rightarrow\left(-1\right)^2-5.\left(-1\right)=1+5=6\)

Thay \(x=\frac{1}{2}\Rightarrow\left(\frac{1}{2}\right)^2-5\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{5}{2}=-\frac{9}{4}\)

b)3x^2-xy tại x= -3,y=-5

Thay \(x=-3;y=-5\Rightarrow3.\left(-3\right)^2-\left(-3\right).\left(-5\right)=3.9-15=12\)

c)5-xy^3 tại x=1,y=-3

\(Thay...x=1;y=-3\Rightarrow5-1.\left(-3\right)^3=5-1.\left(-27\right)=5+27=32\)

13 tháng 7 2019

d)x^5-5 tại x=1,-1

\(Thay..x=1\Rightarrow1^5-5=1-5=-4\)

\(Thay..x=-1\Rightarrow\left(-1\right)^5-5=-1-5=-6\)

e)x^2-3x-5 tại x=-2,y=-1

\(Thay.x=-2;y=-1\Rightarrow\left(-2\right)^2-3\left(-2\right)-5=5+6-5=6\)

g)x^2y^2+x^4y^4+x^6y^6 tại x=1,y=-1

\(Thayx=1;y=-1\Rightarrow1^2\left(-1\right)^2+1^4\left(-1\right)^4+1^6\left(-1\right)^6=1+1+1=3\)

28 tháng 3 2018

bạn thế x=-2 y=-1 hay khác vào là ra à làm biếng làm quá

23 tháng 5 2020

hầy :)) bạn chăm chỉ gõ đống latex này thiệt :vv

23 tháng 5 2020

cảm ơn bạn

19 tháng 4 2017

a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.

Trước hết ta thu gọn đa thức

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3

Thay x = 5; y = 4 ta được:

A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy A = 129 tại x = 5 và y = 4.

b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.

Thay x = -1; y = -1 vào biểu thức ta được:

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.



22 tháng 1 2018

\(a.\)\(x^2+2xy-3x^3+2y^3+3x^3-y^3\)

=\(x^2+2xy+y^3\)

\(thếx=5;y=4\) \(ta\) \(có\)

= \(5^2+2.5.4+4^3\)

= 25 + 40 + 64

=129

b.

\(xy-x^2y^2+x^4y^4-x^6y^6+x^8y^8\)

thế \(x=-1;y=-1\) ta có:

(-1).(-1) - \(\left(-1\right)^2.\left(-1\right)^2\)+\(\left(-1\right)^4.\left(-1\right)^4-\left(-1\right)^6.\left(-1\right)^6+\left(-1\right)^8.\left(-1\right)^8\)

= 1 - 1.1 +1.1 - 1.1 +1.1

= 1-1+1-1+1

= 1

19 tháng 3 2018

e, \(x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)

đặt 80=x+1 ta đc

\(x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15=x+15=79+15=94\)

3 tháng 3 2017

y1 và y2 lần lượt bằng 8 và 6

còn x1, x2 lần lượt bằng -4 và -10

tick nhóe!

ahihi

1: xy+x+y+1=0

=>x(y+1)+(y+1)=0

=>(x+1)(y+1)=0

=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)

2: xy+x+6=0

=>x(y+1)=-6

=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}

=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}

3: -xy-x-y-1=0

=>xy+x+y+1=0

=>x(y+1)+(y+1)=0

=>(x+1)(y+1)=0

=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)

4: xy-x-y+1=0

=>x(y-1)-(y-1)=0

=>(x-1)(y-1)=0

=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)

5: xy+2x+y+11=0

=>x(y+2)+y+2+9=0

=>x(y+2)+(y+2)=-9

=>(x+1)(y+2)=-9

=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}

=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}

6: ĐKXĐ: x<>0

\(\frac{5}{x}+\frac{y}{4}=\frac18\)

=>\(\frac{20+xy}{4x}=\frac18\)

=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)

=>40+2xy=x

=>x-2xy=40

=>x(1-2y)=40

=>x(2y-1)=-40

mà 2y-1 lẻ(do y nguyên)

nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}

=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}

=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}

8: (x+2)(y-3)=-3

=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}

=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 5:

a)

\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)

\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)

b)

\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)

\(=9+3-1-27=-18\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 7:

a)

\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=0; x=-2$

b)

\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy đa thức có nghiệm $x=0$

c)

\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)

Do đó đa thức vô nghiệm.

d)

\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)

Do đó đa thức vô nghiệm.

e)

\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)

Do đó đa thức vô nghiệm.

f)

\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)

\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)

Đa thức có nghiệm $x=1, x=-3$

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

24 tháng 4 2018

Ta có :\(\left(x-1\right)^4\ge0;\left(y+1\right)^4\ge0\)

Mà \(\left(x-1\right)^4+\left(y+1\right)^4=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)(1)

Thay (1) vào C ta có :

\(C=1^3+1.\left(-1\right)^3-1^3\left(-1\right)+\left(-1\right)^3\)

\(\Rightarrow C=1-1+1-1=0\)

Vậy...................................