\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^6}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^5}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)\)

\(2A=1-\frac{1}{3^6}=\frac{3^6-1}{3^6}=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

23 tháng 2 2017

Mong các bạn giúp tớ, tớ sẽ k cho, cảm ơn các bạn.......ek

13 tháng 3 2016

3A=\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

3A-A=\(1-\frac{1}{3^6}\)

2A=\(\frac{3^6-1}{3^6}\)

A=\(\frac{\frac{3^6-1}{3^6}}{2}\)

A=\(\frac{364}{729}\)

13 tháng 3 2016

3A= 3.(1/2+1/3^2+1/3^3+...+1/3^6)

3A= 1+1/3+1/3^2+1/3^3+...+1/3^5

3A-A=(1+1/3+1/3^2+...+1/3^5)-(1/3+1/3^2+..+1/3^6)

2A=1-1/3^6

2A=1-1/729

2A=728/729

A=364/729

k nhé

14 tháng 3 2019

\(1)\)\(\frac{3}{4}\cdot2+\frac{5}{2}\cdot\frac{1}{3}=\frac{3}{2}+\frac{5}{6}=\frac{9+5}{6}=\frac{14}{6}=\frac{7}{3}\)

\(2)\)\(\frac{5}{2}+\frac{3}{11}\cdot\frac{7}{26}\left(19-6\right)=\frac{5}{2}+\frac{3\cdot7}{11\cdot2}=\frac{5}{2}+\frac{21}{22}==\frac{38}{11}\)

15 tháng 8 2018

\(1)A=a\frac{1}{3}+a\frac{1}{4}-a\frac{1}{6}=a\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)=a\frac{5}{12}\)

Thay \(a=-\frac{3}{5}\) vào A,ta đc:

\(A=-\frac{3}{5}.\frac{5}{12}=-\frac{1}{4}\)

\(2)B=b\frac{5}{6}+b\frac{3}{4}-b\frac{1}{2}=b\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)=b\frac{13}{12}\)

Thay \(b=\frac{12}{13}\) vào B, ta đc: \(B=b\frac{13}{12}=\frac{12}{13}.\frac{13}{12}=1\)

30 tháng 1 2020

Câu 1 Tính 

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)

Câu 2 Tính 

\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

Câu 3 

a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)

=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120  (2)

Lấy (2) trừ (1) theo vế ta có : 

3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)

=>  2M = 3120 - 1

=>    M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

        = (1 + 3 + 32) + (3+ 34 + 35) + ... + (3117 + 3118 + 3119)

        = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)

        = 13 + 33.13 + ... + 3117.13

        = 13(1 + 33 + ... + 3117\(⋮\)13

=> M \(⋮\)13

M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)

= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)

= 40 + 34.40 + ... + 3116.40

= 40(1 + 34 + ... + 3116

= 5.8.(1 + 34 + ... + 3116)  \(⋮\)5

4) Tính 

A = 2100 - 299 - 298 - ... - 22 - 2 - 1

=> 2A =  2101 - 2100 - 299 - 298 - 22 - 2 - 1

Lấy 2A trừ A theo vế ta có : 

2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)

=>   A = 2101 - 2100 - 2100 + 1

=>   A = 2101 - (2100 + 2100) + 1

=>   A  = 2101 - 2100 . 2 + 1

=>   A = 1

Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

          = 99.100.101 

=> C = 99.100.101 : 3 =  333300

b) Ta có : D = 22 + 42 + 62 + ... + 982

                    = 22(12 + 22  + 32 + ... + 492

                    =  2.(12 + 22  + 32 + ... + 492)

                    = 22.(1.1 + 2.2 + 3.3 + ... + 49.49)

                    = 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]

                    = 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]

Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

          = 49.50.51 

=> E = 49.50.51/3 = 41650

Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]

               = 22.[41650 - 49(49 + 1)/2]

               = 22.[41650 - 1225 

               = 22.40425

               = 161700

=> D = 161700

6 tháng 4 2018

https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gddt-hoang-hoa-2014-2015/

vào đây gợi ý nhé

k mik đi

@_@

6 tháng 4 2018

đây nè

Đáp án và đề thi HSG toán 6 phòng GD&ĐT Hoằng Hóa 2014-2015

20 tháng 5 2018

a ,A = \(a.\frac{1}{3}+a.\frac{1}{4}-a.\frac{1}{6}\)

      \(=a.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\)

       \(=\frac{-3}{5}.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\\ =\frac{-3}{5}.\frac{5}{12}\)

          \(=\frac{-1}{4}\)    

b,  B = \(b.\frac{5}{6}+b.\frac{3}{4}-b.\frac{1}{2}\)

        \(=b.\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{2}\right)\)

         \(=\frac{12}{13}.\left(\frac{5}{6}+\frac{1}{4}-\frac{1}{2}\right)\)

          \(=\frac{12}{13}.\frac{7}{12}\)

           \(=\frac{7}{13}\)

20 tháng 5 2018

a) Thay \(a=\frac{-3}{5}\)vào biểu thức A ta có :

\(A=\frac{-3}{5}.\frac{1}{3}+\frac{-3}{5}.\frac{1}{4}-\frac{-3}{5}.\frac{1}{6}\)

\(A=\frac{-3}{5}.\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{6}\right)\)

\(A=\frac{-3}{5}.\frac{5}{12}\)

\(A=\frac{-1}{4}\)

Vậy giá trị của biểu thức A tại \(a=\frac{-3}{5}\)là \(\frac{-1}{4}\)

b) Thay \(b=\frac{12}{13}\)vào biểu thức B ta có :

\(B=\frac{12}{13}.\frac{5}{6}+\frac{12}{13}.\frac{3}{4}-\frac{12}{13}.\frac{1}{2}\)

\(B=\frac{12}{13}.\left(\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(B=\frac{12}{13}.\frac{13}{12}\)

\(B=1\)

Vậy giá trị của biểu thức B tại \(b=\frac{12}{13}\)là 1

_Chúc bạn học tốt_

25 tháng 3 2016

A=(6-14/5).25/8-8/5 CHIA 1/4

=16/5.25/8-32/5

=10-32/5

=18/5