
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )


a) 2x2 - 4x = 2x(x- 2) có giá trị dương
Th1: 2x > 0 và x - 2 > 0
<=> x > 0 và x > 2
<=> x > 2
Th2: 2x < 0 và x - 2 < 0
<=> x < 0 và x < 2
<=> x < 0
Vậy 2x^2 - 4x có giá trị dương khi và chỉ khi x < 0 hoặc x > 2
b) ( 3x + 1 ) ( 4x - 3 ) dương
Th1: 3x + 1 > 0 và 4x - 3 > 0
<=> x > -1/3 và x > 3/4
<=> x >3/4
Th2: 3x + 1 < 0 và 4x - 3 < 0
<=> x < -1/3 và x < 3/4
<=> x < -1/3
Kết luận: ...

Áp dụng HĐT số 1;2 ta có :
a ) \(x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)
b ) \(4x^2+4x-3=\left(4x^2+4x+1\right)-4=\left(2x+1\right)^2-4\ge-4\)
a)x2-2x+2=(x2-2x+1)+1=(x-1)2+1\(\ge\)1 .....Dấu "=" xảy ra <=>x-1=0<=>x=1
b)4x2+4x-3=(4x2+4x+1)-4=(2x+1)2-4\(\ge\)-4......dấu"=" xảy ra <=>2x+1=0<=>x=-1/2

giá trị nhỏ nhất của biểu thức : A = |2x-3 |+ 1/2*|4x-1| là \(\frac{5}{2}\)
Ta có:
\(A=4x^2+2x-5=4\left(x^2+x-\frac{5}{4}\right)\)
\(A=4\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}-\frac{3}{2}\right)\)
\(A=4\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{3}{2}\right]\)
\(A=4\left[\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)-\frac{3}{2}\right]=4\left[\left(x+\frac{1}{2}\right)^2-\frac{3}{2}\right]\)
\(A=4\left(x+\frac{1}{2}\right)^2-4.\frac{3}{2}=4\left(x+\frac{1}{2}\right)^2-6\ge-6\)
=>GTNN của A là -6
biểu thức ko thể rút gọn Error
đề thiếu