K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

8x(2x-1)-(4x-1)2-13

=16x2-8x-(16x2-8x+1)-13

=-1-13=-14

4 tháng 7 2016

B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)

\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)

4 tháng 7 2016

\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

3 tháng 9 2020

( 1/3 + 2x )( 4x2 - 2/3x + 1/9 ) - ( 8x3 - 1/27 )

= [ ( 1/3 )3 + ( 2x )3 ] - 8x3 + 1/27

= 1/27 + 8x3 - 8x3 + 1/27

= 2/27

Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )

3 tháng 9 2020

\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\frac{4x^2}{3}-\frac{2x}{9}+\frac{1}{27}+8x^3-\frac{4x^2}{3}+\frac{2x}{9}-8x^3+\frac{1}{27}=\frac{2}{27}\)

Vậy ta có đpcm 

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

15 tháng 12 2017

mk thấy bài 1 phải là ko phụ thuộc vào biến x chứ

15 tháng 12 2017

bài 2 

a= -30

28 tháng 10 2018

1,a, \(\left(2x+1\right)\left(4x^2-2x+1\right)-8x\left(x^2+2\right)=17\)

\(\Leftrightarrow8x^3+1-8x^3-16x=17\)

\(\Leftrightarrow-16x=16\)

\(\Leftrightarrow x=-1\)

\(b,x^2-2x+5\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)

2,\(M=x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge5\)

Dấu "=" xảy ra <=> x +  1 = 0

                        <=> x = -1

Vậy \(M_{min}=5\Leftrightarrow x=-1\)

18 tháng 12 2019

\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)

a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)

b) Theo đề bài ta có:

\(2x^2+x=0\)

\(\Rightarrow x\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)

Thay x = 0 (thỏa mãn điều kiện) vào P ta có:

\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)

Vậy khi x = 0 thì P = -1

c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)

Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)

Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)

\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)

Ta có bảng giá trị:

2x1-1
x\(\frac{1}{2}\)\(-\frac{1}{2}\)
 LoạiLoại

Vậy không có x thỏa mãn P \(\inℤ\)

d) Với x \(\ne\pm\frac{1}{2};P=2\)

\(\Leftrightarrow2x-1=2\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(x=\frac{3}{2}\)thì \(P=2\)