![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\left(x+y\right)^2=3^2\)
\(x^2+y^2+2xy=9\)
Mà \(x^2+y^2=13\)
\(\Rightarrow2xy=9-13=-4\)
\(\Rightarrow xy=-2\)
Có \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=3\left[13-\left(-2\right)\right]\)
\(=3.15\)
\(=45\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk làm rồi vừa làm xong đây nè:
2.(x-y)(x^2+xy+y^2)-3.(x+y)^2= 2.2.(x^2+xy+y^2)-3.(x+y)^2 (vi x-y=2 )
=4(x^2 +xy +y^2) -3. (x+y)^2
=4*x^2 +4.xy + 4.y^2 - ( 3.x^2 + 6.xy +3.y^2 )
=x^2 - 2xy +y^2 = (x-y)^2 =2^2=4
![](https://rs.olm.vn/images/avt/0.png?1311)
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề a,b bạn ghi mik ko hiểu
c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)
Mà \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2xy\)
Lại có:\(x^2+y^2=10\Rightarrow4-2xy=10\Rightarrow2xy=-6\Rightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\times\left(10-\left(-3\right)\right)\)
\(=2\times13=26\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)