\(a+b=ab=\frac{a}{b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

xét:a+b=ab

=>a=ab-b=b(a-1)

=>a/b=a-1

mà a+b=a/b

=>a-1=a+b

=>b=-1

vậy b=-1

thay vào =>tìm đc x

6 tháng 12 2016

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{c+a}\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Leftrightarrow a=b=c\)

Thay vào M được \(M=\frac{3a^2}{3a^2}=1\)

8 tháng 12 2016

bằng 1

29 tháng 12 2016

theo bài ra ta có:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

=> \(\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

=> \(\frac{abc}{ca+cb}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

vì a,b,c khác 0 => ca+cb = ab+ac = bc+ba

=> a = b = c

ta có:

\(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

vậy M = 1

29 tháng 10 2016

Mik ko bk đúng hay sai đâu nha!Đại số lớp 7

24 tháng 12 2016

Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)

\(\Rightarrow x^2=144\)

\(\Rightarrow x=\pm12\)

Vậy \(x=\pm12\)

Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)

+) \(\frac{a}{7}=1\Rightarrow a=7\)

+) \(\frac{b}{9}=1\Rightarrow b=9\)

\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)

Vậy \(\left(a-b\right)^2=4\)

Bài 4:

Giải:

Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\)

\(\Rightarrow a=3k,b=4k\)

\(a^2+b^2=25\)

\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)

\(\Rightarrow9.k^2+16.k^2=25\)

\(\Rightarrow25k^2=25\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k=\pm1\)

+) \(k=1\Rightarrow a=3;b=4\)

+) \(k=-1\Rightarrow a=-3;b=-4\)

\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)

Vậy \(\left|a+b\right|=7\)

 

31 tháng 12 2016

Áp dụng BĐT

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:

\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)

\(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra

10 tháng 6 2018

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{a}{a+b}\cdot b=\frac{c}{b+c}\cdot b\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{b+c}\Rightarrow a\left(b+c\right)=c\left(a+b\right)\Rightarrow ab+ac=ac+bc\Rightarrow ab=bc\Rightarrow a=c\left(1\right)\)

\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{b}{a+b}\cdot a=\frac{c}{a+c}\cdot a\)

\(\Rightarrow\frac{b}{a+b}=\frac{c}{a+c}\Rightarrow b\left(a+c\right)=c\left(a+b\right)\Rightarrow ab+bc=ac+bc\Rightarrow ab=ac\Rightarrow b=c\left(2\right)\)

\(\frac{bc}{b+c}=\frac{ac}{a+c}=\frac{b}{b+c}\cdot c=\frac{a}{a+c}\cdot c\)

\(\Rightarrow\frac{b}{b+c}=\frac{a}{a+c}\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Rightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow a=b\left(3\right)\)

từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ac}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Ta có:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\iff\)\(\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ba}\)

\(\iff\) \(ac+bc=ab+ac=bc+ba\)

+)\(ac+bc=ab+ac\) 

\(\implies\)\(bc=ab\)

\(\implies\) \(c=a\left(1\right)\)

+)\(ab+ac=bc+ba\)

\(\implies\) \(ac=bc\)

\(\implies\) \(a=b\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\implies\) \(a=b=c\)

\(\implies\) \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{aa+bb+cc}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

Vậy \(M=1\)

9 tháng 12 2018

\(\hept{\begin{cases}\frac{ab}{a+b}=\frac{bc}{b+c}\Rightarrow ab.\left(b+c\right)=\left(a+b\right).bc=ab^2+abc=abc+b^2c\\\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\left(a+c\right).bc=\left(b+c\right).ac\Rightarrow abc=c^2a=abc+c^2b\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=c\\a=b\end{cases}\Rightarrow a=b=c\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1}\)

19 tháng 12 2016

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a\cdot a+a\cdot a+a\cdot a}{a^2+a^2+a^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)