Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=x^2-1\)
\(Nx:\)\(x^2\ge0\)
\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)
b) \(B=x^2-2x+3\)
\(=x\left(x-2\right)+3\)
\(Nx:x\left(x-2\right)\ge0\)
\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)
c) \(C=\left|2x+1\right|-5\)
\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)
d) \(D=3x^2+6x-7\)
\(=3\left(x^2+2x\right)-7\)
\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)
\(D_{Min}=-8\Leftrightarrow x=-1\)
Tìm giá trị lớn nhất :
A = -2x2 + 3x + 1
Giải phương trình trên máy tính ta có :
GTLN của A = \(\frac{3}{4}\)
B = 9x2 - x + 3
Giải phương trình trên máy tính ta có :
GTNN của B = \(\frac{1}{18}\)
\(A=-2x^2+3x+1\)
\(=-2\left(x^2-1,5x-\frac{1}{2}\right)\)
\(=-2\left(x^2-1,5x+0,5625-1,0625\right)\)
\(=-2\left[\left(x-0,75\right)^2-1,0625\right]\)
\(=-2\left(x-0,75^2\right)+2,125\le2,125\)
Vậy \(A_{max}=2,125\Leftrightarrow x=0,75\)
\(A=-2x^2+3x+1=-2\left(x^2+2\cdot\frac{-3}{4}x+\frac{9}{16}\right)-\frac{9}{16}+1\)
\(=-2\left(x+\frac{-3}{4}\right)^2+\frac{7}{16}\le\frac{7}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{-3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy GTLN của A=7/16 chỉ khi x=3/4
\(b;9x^2-x+3=\left[\left(3x\right)^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}\right]-\frac{1}{4}+3\)
\(\left(3x-\frac{1}{2}\right)^2+\frac{11}{4}\le\frac{11}{4}\forall x\)
Dấu "=" xảy ra khi bn tự làm
Ta có: a-b=1, suy ra a=3;b=2
Vậy (a+b)2=(3+2)2=25, mình nha!