\(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\)  (có vô hạn dấu căn)

bạn biết ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0

\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)

\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)

Vậy A = 2

3 tháng 10 2015

Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\)  nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)

hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)

Vì A>0 nên A=2

tick nha 

12 tháng 11 2015

A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)

A= 2 + A 

=> A- A - 2 = 0 

=> A - 2A + A - 2 = 0 

=> A(A - 2) + (A - 2) = 0 

=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1

Mà A > 0 nên A = 2

 

6 tháng 9 2015

Đặt A = \(\sqrt{2+\sqrt{2+....}}\)

A^2 = 2 + \(\sqrt{2+\sqrt{2+....}}\) 

A^2 = 2 + A 

=> A^2 - A - 2  = 0 

=> ( A + 1 )(A-2) = 0

=> A = 2 hoặc A = -1 ( loại A > 0 )

Vậy A = 2 

16 tháng 9 2016

a=2 nhe tk nha

26 tháng 5 2016

Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)

Nhận xét : A > 0

Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)

\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)

Vì A > 0 nên ta chọn A = 2 

Vậy giá trị của biểu thức là : A = 2

26 tháng 5 2016

Đặt A= biểu thức đó

=>A^2= 2+ A

=>A^2-A-2=0

Giải PT tìm ra A 

p/s: lấy A>0 thôi

á đù em chưa học anh ơi !

25 tháng 7 2020

\(x=\sqrt{5+\sqrt{13+\sqrt{5}+\sqrt{13+..............}}}\)

\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+.......}}}\)

\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+..........}}}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\)

\(\Rightarrow x^4-10x^2+25-13-x=0\)

\(\Rightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Hình như trong ngoặc có 2 nghiệm dạng lượng giác :v xài lượng giác hóa thử bạn nhé :) ko thì Cardano :))))))

2 tháng 8 2017

x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)

x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)

Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)

Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0

hay E=0.

Vậy E=0

2 tháng 8 2017

nhân \(-x+\sqrt{x^2+3}\)  vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
                         <=>  \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
                          <=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
       lấy (1) + (2) => 2(x+y) =0 => x+y=0        
   lấy