\(x=\frac{a}{m}\), \(y=\frac{b}{m}\)( a , b , m 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Phương pháp giải - Xem chi tiết

+) Sử dụng tính chất: Nếu a,b,c∈Za,b,c∈Z và a<ba<b thì a+c<b+c.a+c<b+c.

Lời giải chi tiết

Theo đề bài ta có x=amx=am; y=bmy=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0) 

Vì x<yx<y nên ta suy ra a<b.a<b.

Ta có :  x=2a2mx=2a2m,  y=2b2my=2b2m;z=a+b2mz=a+b2m

Vì a<b⇒a+a<a+b⇒2a<a+b.a<b⇒a+a<a+b⇒2a<a+b.

Do 2a<a+b2a<a+b nên x<z(1)x<z(1)

Vì a<b⇒a+b<b+b⇒a+b<2b.a<b⇒a+b<b+b⇒a+b<2b.

Do a+b<2ba+b<2b nên z<y(2)z<y(2)

Từ (1) và (2) ta suy ra x<z<y.

9 tháng 9 2021

Bài làm:

Ta có: x=am,y=bmx=am,y=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0) và x<yx<y

⇒a<b⇒a<b

⇒a+a<a+b⇔2a<a+b⇒a+a<a+b⇔2a<a+b

Cũng do a<b⇒a+b<b+b⇔a+b<2ba<b⇒a+b<b+b⇔a+b<2b

Từ hai điều trên suy ra 2a<a+b<2b2a<a+b<2b

Mà x=2a2m,y=2b2m,z=a+b2mx=2a2m,y=2b2m,z=a+b2m (m>0)(m>0)

⇒2a2m<a+b2m<2b2m⇒2a2m<a+b2m<2b2m

Vậy x<z<yx<z<y (đpcm).

Cách của chj mik nha : 

Theo đề bài ta có x =

, y =( a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x =

, y =; z =

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

22 tháng 8 2016

Ta có x = \(\frac{2a}{2m}\)\(\frac{a+b}{2m}\)= z

y = \(\frac{2b}{2m}\)\(\frac{a+b}{2m}\)= z

22 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2x < a+b/m < 2y

=> x < a+b/m : 2 < 2y

=> x < a+b/m . 1/2 < y

=> x < a+b/2m < y

Chứng tỏ ...

ta có: x < y hay a/m < b/m => a < b

so sánh x,y,z ta chuyển chúng cùng mẫu: 2m

x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m

* Mà a < b :

=> a + a < b + a

hay 2a < b + a

=> x < Z (1)

* mà a < b:

=> a + b < b + b

hay a + b < 2b

=> Z < y (2)

từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

5 tháng 9 2017

Ta có: x<y

=>\(\frac{a}{m}< \frac{b}{m}\)

=>a<b

=>a+a<a+b

=>2a<a+b

=>\(\frac{2a}{2m}=\frac{a}{m}< \frac{a+b}{2m}\)

=>x<z (1)

Lại có: x<y

=>a<b

=>a+b<b+b

=>a+b<2b

=>\(\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\)

=>z<y (2)

Từ (1) và (2) suy ra x<z<y

10 tháng 7 2018

Ta có: x<y 

Nên a/m < b/m

==>a<b (vì m>0)

==> a+a <a+b

==> 2a < a+b

==> 2a/2m < a+b/2m (vì 2m>0)

==> a/m < a+b/2m

Do đó x < y.                                        (1)

Ta có: a<b

==> a+b < b+b

==> a+b < 2b

==> a+b/2m < 2b/2m ( vì 2m > 0)

==> a+b/2m < b/m

Do đó z<y.                                             (2)

Từ (1) và (2)

Ta được x<z<y

18 tháng 8 2015

ta có:

x<y=> \(\frac{a}{m}\)<\(\frac{b}{m}\)=> a<b

x=\(\frac{2a}{2m}\); y=\(\frac{2b}{2m}\)

=>2a<2b 

=>a+a<b+b

=>a+a<a+b<b+b

=> 2a<a+b<2b .Nên \(\frac{2a}{2m}\)<\(\frac{a+b}{2m}\)<\(\frac{2b}{2m}\)

vậy x<z<y

cái này dể hiểu hơn

28 tháng 8 2017

ta có: x<y nên a<b nên 1/2.a/m<1/2.b/m                   (1)

z=a+b/2m=1/2.a/m+1/2.b/m

 vì 1/2.a/m<1/2.b/m

nên 1/2.a/m+1/2.a/m=x<1/2.b/m+1/2.a/m=z                   (2)

từ(1) và (2) ta có x<z<y

                               điều phải chứng minh

12 tháng 3 2018

Ta có: x<y⇔a/m<b/m⇔a<bx(1)

Từ (1), Suy ra:

a<b⇔a+a<b+a⇔2a<a+b(2)

a<b⇔a+b<b+b⇔a+b<2b(3)

Từ (2);(3), ta có:

2a<a+b<2b⇔2a/2m<a+b/2m<2b/2m

⇔x<z<y(đpcm)