Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin phép tách ra để bài giải trở nên đẹp hơn :))
Do X1 ; X2 là 2 nghiệm của phương trình \(5x^2-3x-1\) nên theo định lý Viete ta có:
\(X_1X_2=-\frac{1}{5};X_1+X_2=\frac{3}{5}\) ( 1 )
Khi đó ta có:
\(A=\frac{X_1}{X_2}+\frac{X_1}{X_2+1}+\frac{X_2}{X_1}+\frac{X_2}{X_1+1}-\left(\frac{1}{X_1}+\frac{1}{X_2}\right)\) ( theo mình ở đây là +,không biết có đúng ko :V )
\(=\frac{X_1^2+X_2^2}{X_1X_2}+\frac{X_1^2+X_1+X_2^2+X_2}{X_1X_2+X_1+X_2+1}-\frac{X_2+X_1}{X_1X_2}\)
\(=\frac{\left(X_1+X_2\right)^2-2X_1X_2-\left(X_1+X_2\right)}{X_1X_2}+\frac{\left(X_1+X_2\right)^2-2X_1X_2+\left(X_1+X_2\right)}{\left(X_1+X_2\right)+X_1X_2+1}\)
Bạn thay ( 1 ) vào là ra nhé :)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta=\left(2-m\right)^2-4.\left(-3\right)=\left(m-2\right)^2+12\ge0\) luôn đúng
Do đó pt luôn có hai nghiệm \(x_1,x_2\) với mọi m
Ta có : \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
\(\Leftrightarrow\)\(x_1^2+2018-2\sqrt{\left(x_1^2+2018\right)\left(x_2^2+2018\right)}+x_2^2+2018=x_1^2+2x_1x_2+x_2^2\)
\(\Leftrightarrow\)\(2018-\sqrt{\left(x_1x_2\right)^2+2018\left(x_1+x_2\right)^2-4036x_1x_2+2018^2}=x_1x_2\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=m-2\\x_1x_2=-3\end{cases}}\)
(*) \(\Leftrightarrow\)\(2018-\sqrt{\left(-3\right)^2+2018\left(m-2\right)^2-4036.\left(-3\right)+2018^2}=-3\)
\(\Leftrightarrow\)\(9+2018\left(m-2\right)^2+12108+2018^2=2021^2\)
\(\Leftrightarrow\)\(2018\left(m-2\right)^2=0\)
\(\Leftrightarrow\)\(m=2\)
Vậy với m=2 thì hai nghiệm pt thoả mãn \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{cases}}\)
\(2\left(x_1^2+x_2^2\right)-5x_1x_2=27\Leftrightarrow2\left(x_1^2+x_2^2+2x_1x_2\right)-9x_1x_2=27\)
\(2\left(x_1+x_2\right)^2-9x_1x_2=27\)
\(\Rightarrow2\left(2m\right)^2-9\left(2m-1\right)=27\\ \Leftrightarrow8m^2-18m+9=0\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{3}{4}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(x^2-5x+3=0\)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)
a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)
b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)
c) \(C=\left|x_1-x_2\right|\)>0
=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)
=> C = căn 13
d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)
e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)
g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)
\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)