\(x_1,x_2\) là nghiệm của phương trình \(ax^2+bx+c=0,\left(x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn B

29 tháng 5 2018

ko dung vi et

a/∆=9+28=37

x=(3±√37)/2

x-1=(1±√37)/2

1/(x-1)=2(1±√37)/(1-37)=(1±√37)/(-18)

A=(1+1)/(-18)=-1/9

29 tháng 5 2018

Vi-et đi bạn :v

a: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=10\\c=-24\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x_1+x_2=-b\\x_1x_2=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-5\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=5\\c=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=1-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2\\c=-1\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}x_1+x_2=3-\dfrac{1}{2}=\dfrac{5}{2}\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)

b: \(PT\Leftrightarrow x^2+\left(m-3\right)x-m=0\)

\(\text{Δ}=\left(m-3\right)^2+4m\)

\(=m^2-6m+9+4m\)

\(=m^2-2m+1+8=\left(m-1\right)^2+8>0\)

Do đó: PT luon có hai nghiệm phân biệt

\(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2x_1+2x_2}{x_1x_2}=\dfrac{2\cdot\left(-m+3\right)}{-m}=\dfrac{-2m+6}{-m}\)

\(\dfrac{4x_2}{x_1}+\dfrac{4x_1}{x_2}=\dfrac{4\left(x_1^2+x_2^2\right)}{x_1x_2}\)

\(=\dfrac{4\left(x_1+x_2\right)^2-8x_1x_2}{x_1x_2}=\dfrac{4\left(-m+3\right)^2-8\cdot\left(-m\right)}{-m}\)

\(=\dfrac{4\left(m-3\right)^2+8m}{-m}\)

\(=\dfrac{4m^2-24m+36+8m}{-m}=\dfrac{4m^2-16m+36}{-m}\)

c: \(A=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1\)

\(=\sqrt{\left(-m+3\right)^2-4\cdot\left(-m\right)}+1\)

\(=\sqrt{m^2-6m+9+4m}+1\)

\(=\sqrt{m^2-2m+1+8}+1\)

\(=\sqrt{\left(m-1\right)^2+8}+1\ge2\sqrt{2}+1\)

Dấu '=' xảy ra khi m=1

NV
25 tháng 12 2018

\(x^2+5x-3=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-5\\x_1x_2=\dfrac{c}{a}=-3\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2.\left(-3\right)=31\)

14 tháng 3 2017

\(x^2-2\left(m-1\right)x+m^2+4=0\)

\(\Delta=b^2-4ac\)

\(\Delta=-8m-12\)

Để phương trình có 2 nghiệm phân biệt

\(\Rightarrow\Delta>0\Leftrightarrow m< -\dfrac{3}{2}\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=4\left(m-1\right)^2\\x_1x_2=m^2+4\end{matrix}\right.\)

Theo yêu cầu đề bài \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=3\)

\(\Leftrightarrow\dfrac{x^2_1+x^2_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{4\left(m-1\right)^2-2\left(m^2+4\right)}{m^2+4}=3\)

\(\Leftrightarrow\dfrac{4\left(m^2-2m+1\right)-2m^2-8}{m^2+4}=3\)

\(\Leftrightarrow\dfrac{2m^2-8m-4}{m^2+4}=3\)

\(\Leftrightarrow2m^2-8m-4=3m^2+12\)

\(\Leftrightarrow m^2+8m+16=0\)

\(\Delta=b^2-4ac\)

\(\Delta=0\)

\(\Rightarrow m=-\dfrac{b}{2a}=-4\)

13 tháng 5 2017

Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)

Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0

AH
Akai Haruma
Giáo viên
22 tháng 4 2018

Lời giải:

Áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=7\\ x_1x_2=3\end{matrix}\right.\)

Do đó:

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{7}{3}\)

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1x_2}=\frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{49-6}{3}=\frac{43}{3}\)

Có: \(\frac{7}{3}+\frac{43}{3}=\frac{50}{3}; \frac{7}{3}.\frac{43}{3}=\frac{301}{9}\)

Áp dụng định lý Viete đảo thì \(\frac{7}{3}; \frac{43}{3}\) là nghiệm của PT:

\(X^2-\frac{50}{3}X+\frac{301}{9}=0\)

\(\Leftrightarrow 9X^2-150X+301=0\)

23 tháng 4 2018

nana