Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a: -x1,-x2 là nghiệm của ptr x2-(-x1-x2)x+x1x2=0
<=>x2-px-5=0(x1+x2=-p,x1x2=-5)
Câu b: \(\dfrac{1}{x_{1}}\),\(\dfrac{1}{x_{2}}\)là nghiệm của ptr: t2-(\(\dfrac{1}{x_{1}}\)+\(\dfrac{1}{x_{2}}\))+\(\dfrac{1}{x_{1}x_{2}}\)=0
<=>t2-\(\dfrac{p}{5}\)x-\(\dfrac{1}{5}\)=0
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)
Theo giả thuyết thì:
\(x_1^2+x_2^2=2x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)
\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)
\(\Leftrightarrow b^2-4ac=0\)
Vậy ta có ĐPCM
Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0