Giả sử x 1 , x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

 Vì \(x_2\)là nghiệm của phương trình

=> \(x_2^2-5x_2+3=0\)

=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)

Khi đó

\(A=||x_1-2|-|x_2-2||\)

=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)

=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)

Mà A>0(đề bài)

=> A=1

Vậy A=1

19 tháng 8 2017

a)x=-2;0;2

b)x=-1,5;-0,5;0;1;1,5;2,5

c)x=-9;-4;0;2;6;11

d)x=-8;2;4;14

NV
9 tháng 2 2020

\(P=\frac{2}{3xy}+\frac{3}{\sqrt{3\left(1+y\right)}}\ge\frac{2}{3y\left(3-y\right)}+\frac{6}{y+4}\)

\(\Rightarrow P\ge2\left(\frac{-9y^2+28y+4}{3\left(-y^3-y^2+12y\right)}\right)=2\left(\frac{2\left(-y^3-y^2+12y\right)+2y^3-7y^2+4y+4}{3\left(-y^3-y^2+12y\right)}\right)\)

\(P\ge2\left(\frac{2}{3}+\frac{\left(y-2\right)^2\left(2y+1\right)}{3y\left(3-y\right)\left(y+4\right)}\right)\ge\frac{4}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

9 tháng 2 2020

@Nguyễn Việt Lâm duyệt bài giúp em với ạ @Phạm Minh Quang nick đây

BĐT Bu nhi a cốp xki :

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x.1+y.1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\)Nguyễn Thị Thanh Trang

\(P=2018xy+2019\left(x+y\right)\le2018.\frac{x^2+y^2}{2}+2019\sqrt{2\left(x^2+y^2\right)}=2018.\frac{1}{2}+2019\sqrt{2.1}=1009+2019\sqrt{2}\)

Vậy GTLN của P là \(1009+2019\sqrt{2}\) . Dấu \("="\) xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)

NV
23 tháng 2 2020

Pt đã cho có 3 nghiệm pb khi nó có một nghiệm bằng 0

\(\Rightarrow m^2-1=0\Rightarrow m=\pm1\)

- Với \(m=1\Rightarrow-x^2=0\) chỉ có 1 nghiệm (ktm)

- Với \(m=-1\Rightarrow-2x^4+x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\frac{\sqrt{2}}{2}\end{matrix}\right.\) (t/m)

Vậy \(m=-1\)

2 tháng 7 2019

a, Mệnh đề đúng

\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)

b, Mệnh đề sai

\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)

c, Mệnh đề đúng

\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ

d, Mệnh đề đúng

\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)

NV
22 tháng 11 2019

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)