Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
Ta có:
\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)
= \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)
\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)
\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)
\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Mà \(a,b,c>0\)
\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)
\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
Lại có:
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>
bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha
Sử dụng giả thiết \(a^2+b^2+c^2=3\), ta được: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)\(\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)
Tương tự, ta được: \(\frac{b^2c^2+7}{\left(b+c\right)^2}\ge1+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}\); \(\frac{c^2a^2+7}{\left(c+a\right)^2}\ge1+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\)
Ta quy bài toán về chứng minh bất đẳng thức: \(\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\ge3\)
Áp dụng bất đẳng thức Cauchy ta được \(\Sigma_{cyc}\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\ge3\sqrt[3]{\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Áp dụng bất đẳng thức quen thuộc \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)ta được: \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Mặt khác ta lại có
\(4\left(a^2+b^2\right)\left(b^2+c^2\right)\le\left(2b^2+c^2+a^2\right)^2\)(1) ; \(4\left(b^2+c^2\right)\left(c^2+a^2\right)\le\left(2c^2+a^2+b^2\right)^2\)(2);\(4\left(c^2+a^2\right)\left(a^2+b^2\right)\le\left(2a^2+b^2+c^2\right)^2\)(3) (Theo BĐT \(4xy\le\left(x+y\right)^2\))
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(64\left(a^2+b^2\right)^2\left(b^2+c^2\right)^2\left(c^2+a^2\right)^2\)\(\le\left(2a^2+b^2+c^2\right)^2\left(2b^2+c^2+a^2\right)^2\left(2c^2+a^2+b^2\right)^2\)
hay \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Từ đó dẫn đến \(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Suy ra \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Vậy bất đẳng thức trên được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)
\(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)
\(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)
mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)
tương tự mấy cái kia rồi + vào, ta có
\(Q\le1+4\left(a+b+c\right)+3=8\)
dấu = xảy ra <=>a=b=c=1/3
^_^
1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2
= ( a2 + 2ab +b2 ) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )
= ( a + b )2 + ( a + c )2 + ( b + c )2
1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c2 )
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2
= 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )
= (a-b)2 + (a-c)2 + (b-c)2
1. (a2+b2+ab)2-a2b2-b2c2-c2a2
=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2
=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2
=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)
=(a2+b2)[(a+b)2-c2]
=(a2+b2)(a+b+c)(a+b-c)
2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2
3. a(b3-c3)+b(c3-a3)+c(a3-b3)
=ab3-ac3+bc3-ba3+ca3-cb3
=a3(c-b)+b3(a-c)+c3(b-a)
=a3(c-b)-b3(c-a)+c3(b-a)
=a3(c-b)-b3(c-b+b-a)+c3(b-a)
=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)
=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)
=(a-b)(c-b)(a2+ab+2b2+bc+c2)
4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)
5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]
=2b(3a2+b2)
6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]
=(x-y-1)(x2+y2+xy-2x-y+1)
7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)
(Đúng nhớ like nhá !)
Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi