Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(p\ne3\)thì \(p=3k\pm1\).
Khi đó \(p^2+2=\left(3k\pm1\right)^2+3=9k^2\pm6k+3⋮3\)mà dễ thấy \(p^2+2>3\)
do đó \(p^2+2\)không là số nguyên tố.
Suy ra \(p=3\). Khi đó \(p^3+2=29\)là số nguyên tố. (đpcm)
2. Ta có:
+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2
+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3
+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)
=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1
=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.
Vậy p = 3.
Theo đề ra ta có
p + n + e = 34
mà p = e => 2p + n = 34 (1)
lại có : p+e - n =10
2p - n =10 => 2p = 10+n (2)
thay (2) vào (1) ta có ;
10 +n + n = 34
2n = 34-10 = 24
n = 24 : 2 = 12
=> 2p = 34 - 12 = 22
p = 22 : 2 = 11
=> e = 11
Vậy p =e =11 . n = 12
=> nguyên tố cần tìm là Natri (Na )
Để N nguyên thì \(3x^2-4x-17⋮x+2\)
\(3x^2+6x-10x-20+3⋮x+2\)
\(3x\left(x+2\right)-10\left(x+2\right)+3⋮x+2\)
\(\left(x+2\right)\left(3x-10\right)+3⋮x+2\)
Dễ thấy \(\left(x+2\right)\left(3x-10\right)⋮x+2\)
\(\Rightarrow3⋮x+2\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow x\in\left\{-1;1;-5;-3\right\}\)
Vậy......
Mấy bạn giúp mình với nha !
CMR nếu n và n2 + 2 là các số nguyên tố thì n3 + 2 cũng là số nguyên tố !
nếu n=3 thì đúng
nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi
Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)
Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)
Điều này trái với giả thiết.
Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
- Với \(p=2\Rightarrow p^2+2=2^2+2=6\) không là số nguyên tố (ktm).
- Với \(p=3\Rightarrow p^2+2=3^2+2=11\) là số nguyên tố (tm)
\(\Rightarrow p^3+2=3^3+2=29\) là số nguyên tố (đúng).
- Với \(p>3\) \(\Rightarrow p\) chia \(3\) dư \(1\) hoặc \(2\)
\(\Rightarrow p^2\) chia \(3\) dư \(1\) (do số chính phương chia \(3\) dư \(0\) hoặc \(1\)).
\(\Rightarrow p^3+2\) chia hết cho \(3\) nên không là số nguyên tố (ktm).
- Từ 3 điều trên, ta suy ra đpcm.
hhhh