K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

HÌnh bạn tự vẽ.

Bổ đề: (định lý Ptô-lê-mê)

Trong một tứ giác nội tiếp ABCD, ta có:

AC . BD = AB . CD + BC . AD

Áp dụng bổ đề trên cho tứ giác nội tiếp IPAN, ta có IA.NP = IP.AN + IN.AP = 2r(p - a) (ở đây ta đặt BC = a, CA = b, AB = c) và

\(p=\frac{a+b+c}{2}\) thì AN = AP = p - a.

Tương tự IB . PM = 2r(p - b)

                 IC . MN = 2r(p - c)

Nhân theo vế ba đẳng thức trên ta được:

\(IA.IB.IC.MN.NP.PM=8r^3\left(p-a\right)\left(p-b\right)\left(p-c\right)\).

Mặt khác, vì r là bán kính đường tròn ngoại tiếp \(\Delta MNP\)nên MN.NP.PM = \(4rS_{MNP}\).

Ngoài ra theo công thức Hê-rông ta có:

\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\).Do đó:

IA . IB . IC. 4rSMNP = \(\frac{8r^3.S^2_{ABC}}{p}=8r^4S_{ABC}\)(vì SABC = pr), suy ra đpcm

  P/s: Chỗ nào không hiểu thì bạn chỉ việc vẽ hình ra và quan sát hình là được :))

Trả lời:

a) Xét tam giác AHI và AKI có :

AI là cạnh chung

góc HAI =góc KAI

góc H = góc K (=90)

suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )

suy ra góc AIH =AIK (hai góc tg ứng)

suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )

xét tam giác HIB và KIC có

HIB = KIC (chứng minh trên )

BHI=CKI (=90)

BI=IC

suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )

suy ra BH=CK ( hai cạnh tương ứng ) (điều phải chứng minh )

b) Xét tam giác AHI và AKI có :

AI là cạnh chung

góc HAI =góc KAI

góc H = góc K (=90)

suy ra tam giác AHI = tam giác AKI (cạnh huyền - góc nhọn )

suy ra góc AIH =AIK (hai góc tg ứng)

suy ra góc HIB = KIC (cùng kề vs hai góc bằng nhau )

xét tam giác HIB và KIC có

HIB = KIC (chứng minh trên )

BHI=CKI (=90)

BI=IC

suy ra tam giác HIB=KIC(cạnh huyền góc nhọn )

suy ra BH=CK ( hai cạnh tương ứng ) (đpcm)

                               ~Học tốt!~

14 tháng 5 2020

2345T67

14 tháng 5 2020

a, Xét tg AHI và tg AKI ta có:
góc H = góc K = 90
AI là cạnh chung
góc HAI = góc KAI ( AI là tia phân giác góc BAC)

=> tg AHI =tg AKI ( cạnh huyền-góc nhọn)
=> AH=AK

11 tháng 11 2016

A B C D a)

ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C

ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD

CM tương tự ta có: CD=AB

xét \(\Delta ABC\)\(\Delta DCB\) có:

BD=AC(cmt)

AB=DC(cmt)

BC(chung)

\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)

=>\(\widehat{BAC}=\widehat{BDC}=80^o\)

b)

theo câu a, ta có:

\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)

=>CD//AB(2 góc slt)

 

11 tháng 11 2016

A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn

ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé

26 tháng 2 2017

nhieu qua

26 tháng 2 2017

Giúp mình đi 1 bài cũng được

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

1. Tìm các số tự nhiên a, b, c khác 0 thỏa mãn:\(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1.\)

2. Chứng minh rằng trọng tâm, trực tâm và tâm đường tròn nội tiếp (giao điểm của 3 đường trung trực) trong một tam giác thẳng hàng.

3. chứng minh rằng nếu a,b,c là các số hửu tỉ thì \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hửu tỉ.

4.Cho tam giác ABC có \(\widehat{A}=30^0\), BC=2cm. Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^0\). Tính độ dài AD.

5. Tìm các số a,b sao cho 2007ab là bình phương của số tự nhiên.

6. Cho tam giác ABC vuông tại A, đường cao AH. Gọi M,N lần lượt là trung điểm của AH và BH. Chứng minh rằng \(CM\perp AN\)

7. Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}>10\)

8. Cho tam giác ABC, H là trực tâm, O là tâm đường tròn đi qua ba đỉnh của tam giác. Chứng minh rằng khoảng cách từ O đến một cạnh của tam giác bằng một nửa khoảng cách từ H đến đỉnh đối diện.

9. Tìm x,y,z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

10. Độ dài ba cạnh của 1 tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao tương ứng của tam giác đó tỉ lệ với ba số nào?

2
11 tháng 4 2018

Bài 7 : 

( bạn đạt A = (...) cái biểu thức đấy nhé, tự đặt ) 

Ta có : 

\(\frac{1}{\sqrt{1}}=\frac{1}{1}>\frac{1}{10}=\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(............\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

\(\Rightarrow\)\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)

\(\Rightarrow\)\(A>10\)

Vậy \(A>10\)

Chúc bạn học tốt ~ 

11 tháng 4 2018

Bạn làm được mình bài 7 thôi à, mình thấy bạn giỏi lắm mà. Mình có tới mấy chục bài cần giải cơ. Dạo này mình hỏi nhiều vì sắp đi thi.