Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì không giảm giá thì cửa hàng được lãi 20%.
Khi giảm giá bán 10% 1 chiếc điện thoại, tỉ lệ của số tiền lãi lẫn vốn so với tiền vốn là:
100% + 8%=108%
Khi giảm giá bán 10% 1 chiếc điện thoại, tỉ lệ giữa số tiền nếu không giảm giá và số tiền khi giảm giá là:
100% - 10% = 90%
Nếu không giảm giá, tỉ lệ giữa số tiền lãi lẫn vốn so với tiền vốn là:
108% : 90% * 100% = 120%
Nếu không giảm giá thì cửa hàng được lãi so với tiền vốn:
120% -100% = 20%
Đáp số: 20%
a)
Gọi x là số lượng khách từ người thứ 11 trở lên của nhóm (x>0)
Giá vé khi có thêm x khách là: \(800{\rm{ }}000 - 10{\rm{ }}000.x\)(đồng/người)
Doanh thu khi thêm x khách là:
\(\left( {x + 10} \right).\left( {800000 - 10000x} \right)\)\( = 10000\left( {x + 10} \right)\left( {80 - x} \right)\) (đồng)
b)
Chi phí thực sau khi thêm x vị khách là: 700 000(x+10) (đồng)
Lợi nhuận khi thêm x vị khách là:
\(T = 10000\left( {x + 10} \right)\left( {80 - x} \right)\)\( - 700000\left( {x + 10} \right)\)
\(\begin{array}{l} = 10000\left( {x + 10} \right).\left[ {80 - x - 70} \right]\\ = 10000\left( {x + 10} \right)\left( {10 - x} \right)\end{array}\)
Để công ty không bị lỗ thì lợi nhuận lớn hơn hoặc bằng 0
\(\begin{array}{l} \Leftrightarrow 10000\left( {x + 10} \right)\left( {10 - x} \right) \ge 0\\ \Leftrightarrow - 10 \le x \le 10\end{array}\)
Khi đó số khách du lịch tối đa là \(x + 10 = 10 + 10 = 20\) người thì công ty không bị lỗ.
a) Tổng số tiền mẹ Việt rút ra được là:
\(T = 2\;000\;000\;000.{(1 + 7\% )^3} = 2\;450\;086\;000\)(đồng)
b) Với số tiền nêu trên, mẹ Việt mua được căn hộ chung cư với diện tích là:
\(2\;450\;086\;000:30\;626\;075 = 80\)(mét vuông)
TRAO ĐỔI
Để mua được căn hộ 100 mét vuông, cần số tiền là:
\(30\;626\;075.100 = 3\;062\;607\;500\)(đồng)
Gọi A là số tiền gửi vào (đơn vị đồng).
Ở thời điểm tháng 1 năm 2021, số tiền thu được là:
\(\begin{array}{l}T = A.{(1 + 7\% )^3} = 3\;062\;607\;500\\ \Rightarrow A = 3\;062\;607\;500:{(1 + 7\% )^3} = 2\;500\;000\;000\end{array}\)
Vậy để mua được căn hộ 100 mét vuông ở thời điểm tháng 1 năm 2021, mẹ Việt cần phải gửi tiết kiệm từ tháng 1 năm 2018 số tiền là 2 500 000 000 đồng.
a)
Do x là số lượng khách thứ 51 trở lên nên x>0.
Cứ thêm 1 người thì giá còn (300000-5 000.1) đồng/người cho toàn bộ hành khách.
Thêm x người thì giá còn (300 000-5 000.x) đồng/người cho toàn bộ hành khách.
Doanh thu theo x: \(\left( {50 + x} \right).\left( {300000 - 5000x} \right)\) (VNĐ)
b) Do chi phí thực sự cho chuyến đi là 15 080 000 đồng nên để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng 15 080 000 đồng
Khi đó:
\(\begin{array}{l}\left( {50 + x} \right).\left( {300000 - 5000x} \right) \ge 15080000\\ \Leftrightarrow \left( {50 + x} \right).5000.\left( {60 - x} \right) \ge 15080000\\ \Leftrightarrow \left( {x + 50} \right)\left( {60 - x} \right) \ge 3016\\ \Leftrightarrow - {x^2} + 10x + 3000 \ge 3016\\ \Leftrightarrow - {x^2} + 10x - 16 \ge 0\\ \Leftrightarrow {x^2} - 10x + 16 \le 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 8} \right) \le 0\\ \Leftrightarrow 2 \le x \le 8\end{array}\)
Vậy số người của nhóm du khách nhiều nhất là 58 người.
TRẢ LỜI:
Gọi x, y, z lần lượt là số đồng tiền xu loại 2000 đồng, 1000 dồng, 500 đồng.
Điều kiện là x, y, z nguyên dương
Ta có hệ phương trình
x + y + z = 1450 (1)
4x + 2y + z = 3000 (2)
2x + y - 2z = 0 (3)
Trừ từng vế tương ứng của phương trình (2) với phương trình (1) ta được
3x + y = 1550
Cộng từng vế tương ứng của các phương trình (1), (2) và (3) ta có :
7x + 4y = 4450.
Giải hệ gồm hai phương trình (4) và (5) ta được.
x = 350, y = 500.
Thay các giá trị của x, y vào phương trình (1) ta được z = 600.
Vậy cửa hàng đổi được 350 đồng tiền xu loại 2000 đồng, 500 đồng tiền loại 1000 đồng và 600 đồng tiền xu loại 500 đồng.
Gọi x,y,z là số đồng tiền các loại mệnh giá 2000 đồng, 1000 đồng và 500 đồng. (\(\left(x,y,z\in N^{\circledast}\right)\).
Theo giả thiết ta có: \(x+y+z=1450\) (đồng).
Do tổng số tiền cần đổi là 1 500 000 đồng nên:
\(2000x+1000y+500z=1500000\)
Do số tiền xu loại 1 000 đồng bằng hai lần hiệu của số tiền xu loại 500 đồng với số tiền xu loại 2000 đồng nên:\(y=2\left(z-x\right)\)
Vậy ta có hệ:
\(\left\{{}\begin{matrix}x+y+z=1450\\2000x+1000y+500z=1500000\\y=2\left(z-x\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=350\\y=500\\z=600\end{matrix}\right.\)
vậy số tiền loại 2000 đồng là 350 tờ; số tiền loại 1000 đồng là 500 tờ; số tiền loại 600 đồng là 600 tờ.