![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mk hướng dẫn bạn cách làm thôi nha (Tại nó dài lắm!)
\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\) (y \(\ge\) 1)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y^2\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+2\right)\left(y^2-x-1\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=0\\y^2-x-1=0\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-2\\x=y^2-1\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Xét các TH1: \(\left\{{}\begin{matrix}x=-2\\-2+y=3\sqrt{y-1}\end{matrix}\right.\)
Giải hpt tìm được: \(\left[{}\begin{matrix}y=\dfrac{13+\sqrt{117}}{2}\left(TM\right)\\y=\dfrac{13-\sqrt{117}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Rightarrow\) y = \(\dfrac{13+\sqrt{117}}{2}\)
Vậy ...
TH2: \(\left\{{}\begin{matrix}x=y^2-1\\y^2-1+y=3\sqrt{y-1}\end{matrix}\right.\)
Chứng minh được pt thứ hai vô nghiệm
Vậy ...
Chúc bn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\hept{\begin{cases}\sqrt[3]{x}=a\\\sqrt[3]{y}=b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\left(a^3+b^3\right)=3\left(a^2b+b^2a\right)\\a+b=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left(a^3+b^3\right)=\left(a+b\right)^3=6^3=216\\a+b=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]=216\\a+b=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3.6\left[6^2-3ab\right]=216\\a+b=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=8\\a+b=6\end{cases}}\)
Tới đây bí
![](https://rs.olm.vn/images/avt/0.png?1311)
câu 2:
\(Pt\Leftrightarrow xy^2+\left(2x-32\right)y+x=0\)
phương trình ẩn y phải có nghiệm ,xét
\(\Delta'=\left(x-16\right)^2-x^2\ge0\)
\(\Leftrightarrow x^2-32x+256-x^2\ge0\Leftrightarrow x\le8\)
mà x,y là các số nguyên dương \(\Rightarrow1\le x\le8\left(x\in N\right)\)
lần lượt thử từng Th ta thu được (x;y)=(6;3),(8;1)
cách khác: \(Pt\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
x nguyên dương , (y;\(\left(y+1\right)^2\))=1 nên 32\(⋮\left(y+1\right)^2\left(y\in z\right)\)
lần lượt thử từng Th như trên
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)
Từ đó thế vào PT(2)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
part full :v
*Th 1: \(x+y=2\)
\(Pt\left(1\right)\Leftrightarrow3y\sqrt{2-y^2}=x+\dfrac{4}{x+1}\)
xét \(VT=3y\sqrt{2-y^2}=3\sqrt{y^2\left(2-y^2\right)}\le3.\dfrac{y^2+2-y^2}{2}=3\)(theo AM-GM)
\(VT=x+\dfrac{4}{x+1}=\left(x+1\right)+\dfrac{4}{x+1}-1\ge2\sqrt{\dfrac{4\left(x+1\right)}{x+1}}-1=4-1=3\)(theo AM-GM)
do đó \(VT\le3;VF\ge3\)
\(VT=VF\Leftrightarrow\left\{{}\begin{matrix}y^2=2-y^2\\x+1=\dfrac{4}{x+1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\pm1\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\)(tmđkxđ)(4 cặp)
*TH 2 \(\left(x+1\right)\sqrt{2-y^2}=1\Leftrightarrow x+1=\dfrac{1}{\sqrt{2-y^2}}\)(\(-\sqrt{2}< y< \sqrt{2}\))
thế vào Pt(1) , bình phương giải (nhác làm quá)