Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo vi-et thì ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{3a-1}{2}\\x_1x_2=-1\end{cases}}\)
Từ đây ta có:
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(\frac{3a-1}{2}\right)^2-4.1=\left(\frac{3a-1}{2}\right)^2-4\)
Theo đề bài thì
\(P=\frac{3}{2}.\left(x_1-x_2\right)^2+2\left(\frac{x_1-x_2}{2}+\frac{1}{x_1}-\frac{1}{x_2}\right)^2\)
\(=\frac{3}{2}.\left(x_1-x_2\right)^2+2.\left(x_1-x_2\right)^2\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\)
\(=\left(x_1-x_2\right)^2\left(\frac{3}{2}+2.\left(\frac{1}{2}-\frac{1}{x_1x_2}\right)^2\right)\)
\(=\left(\left(\frac{3a-1}{2}\right)^2-4\right)\left(\frac{3}{2}+2.\left(\frac{1}{2}+1\right)^2\right)\)
\(=6\left(\left(\frac{3a-1}{2}\right)^2-4\right)\ge6.4=24\)
Dấu = xảy ra khi \(a=\frac{1}{3}\)
Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:
\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)
\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)
Tương tự: \(x_2^2+3x_2-2=8x_2-1\)
\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)
Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)
Thay vào:
\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)
\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)
\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)
Bạn tự thay số
1,\(\left(x_1+x_2\right)^2=x_1^2+2x_1x_2+x_2^2\)
2,\(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)
3,\(x_1^2+x_2^2=x^2+x_2^2_{ }\)vì không có công thức tổng 2 bình phường đâu bạn!
4,\(x_1^2-x_2^2=\left(x_1-x_2\right)\left(x_1+x_2\right)\)
giúp mình đi mấy bạn ơi , sắp thi rồi