Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4a.
Kẻ tia $Om\parallel Ax$ như hình:
Vì $Ax\parallel Om$ nên $\widehat{AOm}=\widehat{xAO}=30^0$ (hai góc so le trong)
$\Rightarrow \widehat{mOB}=\widehat{AOB}-\widehat{AOm}=70^0-30^0=40^0$
$Ax\parallel By, Ax\parallel Om\Rightarrow By\parallel Om$
$\Rightarrow \widehat{B}=\widehat{mOB}=40^0$ (hai góc so le trong)
a) Trên nửa mặt phẳng bờ OB chứa điểm A, kẻ tia Oz//Ax//By
Ta có: Oz//Ax(cách vẽ)
\(\Rightarrow\widehat{xAO}=\widehat{AOz}=30^0\)( 2 góc so le trong)
Ta có: \(\widehat{AOz}+\widehat{zOB}=\widehat{AOB}\)
\(\Rightarrow\widehat{zOB}=\widehat{AOB}-\widehat{AOz}=70^0-30^0=40^0\)
Ta có: Oz//By
\(\Rightarrow\widehat{B}=\widehat{zOB}=40^0\)( 2 góc so le trong)
b) Xét tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( tổng 3 góc trong tam giác)
\(\Rightarrow\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-60^0-40^0=80^0\)
\(\Rightarrow y=80^0\)
Xét tứ giác AEDB có:
\(\widehat{AED}+\widehat{EDB}+\widehat{ABD}+\widehat{BAE}=360^0\)
\(\Rightarrow\widehat{EDB}=360^0-\widehat{AED}-\widehat{ABD}-\widehat{BAE}=360^0-90^0-40^0-60^0=170^0\)
\(\Rightarrow x=170^0\)
hình em tự vẽ nhé
Xét tam giác AND có H là trung điểm của AN,M là trung điểm của AD(gt)
\(\Rightarrow HM\)là đường trung bình của tam giác AND
\(\Rightarrow HM//ND\)
Mà \(H\in BC;M\in BC\)
\(\Rightarrow BC//ND\)
Câu 4:
Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\left|2y+3\right|\ge0\forall y\)
Do đó: \(\left|x+2\right|+\left|2y+3\right|\ge0\forall x,y\)
Dấu '='xảy ra khi x=-2 và \(y=-\dfrac{3}{2}\)
ai giải bải này cko mik với ạ mik cảm ơn
một thửa ruộng hình chữ nhật có chiều dài 54m, chiếu rộng bằng 2/3 chiều dài người ta cấy lúa trên thửa ruộng đó trung bình 100m vuông thu được 70kg thóc .Hỏi cả thửa ruộng thu được bao nhiêu tạ thóc
A B C H
a) Vì \(\Delta ABC\)là tam giác cân tại A
=> \(AB=AC\)và \(\widehat{B}=\widehat{C}\)
CM \(\Delta AHB=\Delta AHC\)
Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(HB=HC\)( vì M là trung điểm của BC )
=> \(\Delta AHB=\Delta AHC\left(c.g.c\right)\)
b) CM \(AH\perp BC\)
Vì \(\Delta AHB=\Delta AHC\)
=> \(\widehat{H_1}=\widehat{H_2}\)( hai góc tương ứng ) ( chỗ này mình vẽ thiếu, bạn tự bổ sung )
mà \(\widehat{H_1}+\widehat{H_2}=180^0\)( kề bù )
=> \(\widehat{H}_1=\widehat{H_2}=\frac{180^0}{2}=90^0\)
=> \(AH\perp BC\)( đpcm )
d) Nếu AB = 5cm , AH = 3cm . Tính BC
Vì \(\widehat{H_1}=90^0\)=> \(\Delta AHB\)là tam giác vuông
=> \(AB^2=AH^2+BC^2\)( Đ/lí Pytago )
Thay AB = 5cm, AH = 3cm ta có
\(5^2=3^2+BC^2\)
\(25=9+BC^2\)
=> \(BC^2=16\)
mà \(\sqrt{16}=4\)=> BC = 4cm