\(G=(\dfrac{\sqrt x-2}{x-1}-\dfrac{\sqrt x+2}{x+2\sqrt x+1})×\dfrac{x^2-2x+1}{2}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x>=0; x<>1

b: \(G=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: KHi x=0,16 thì \(G=-\dfrac{2}{5}\cdot\left(\dfrac{2}{5}-1\right)=\dfrac{6}{25}\)

a: ĐKXĐ: x>=0; x<>1

b: \(G=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Khi x=0,16 thì \(G=-0.4\cdot\left(0.4-1\right)=-0.4\cdot\left(-0.6\right)=0.24\)

d: G=-x+căn x

\(=-\left(x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu = xảy ra khi x=1/4

a: \(G=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b: Khi x=0,16 thì \(G=-0,4\left(0,4-1\right)=-0,4\cdot\left(-0,6\right)=0,24\)

19 tháng 12 2018

a. ĐKXĐ: x\(\ne1\) x, \(\ne-1\)

b. \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)

=\(\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

=\(\left(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(\left(\dfrac{\left(\sqrt{x}-2\right).\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\left(\dfrac{\left(\sqrt{x}-2\right)-\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\left(\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\sqrt{x}+1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{4}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1^2}{2}=2\left(\sqrt{x}-1\right)=2\sqrt{x}-2\)

c. khi x=0,16 thì G=\(2\sqrt{x}-2=2\sqrt{0,16}-2=2.0,4-2=0,8-2=-1,2\)

a: ĐKXĐ: x>=0; x<>1

b: \(G=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{2}\cdot\left(\sqrt{x}-1\right)\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Thay x=0,16 vào G, ta được:

\(H=-0,4\cdot\left(0,4-1\right)=-0,4\cdot0,3=-0,12\)

Câu 2: 

a: ĐKXĐ: x>=0; x<>1

b: \(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=-\dfrac{2\sqrt{x}}{2}\cdot\left(\sqrt{x}-1\right)=-\sqrt{x}\left(\sqrt{x}-1\right)\)

c: Thay x=4/25 vào G, ta được:

\(G=-\dfrac{2}{5}\cdot\left(\dfrac{2}{5}-1\right)=\dfrac{-2}{5}\cdot\dfrac{-3}{5}=\dfrac{6}{25}\)

 

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm