K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

ĐKXĐ: $x\geq 2$

BPT $\Leftrightarrow x+1< 2x-3+2\sqrt{(x-1)(x-2)}$

$\Leftrightarrow 4-x< 2\sqrt{(x-1)(x-2)}$

$\Rightarrow (4-x)^2< 4(x-1)(x-2)$

$\Leftrightarrow 3x^2-4x-8>0$

$\Leftrightarrow x>\frac{2+2\sqrt{7}}{3}$ hoặc $x< \frac{2-2\sqrt{7}}{3}$

Kết hợp ĐKXĐ: suy ra $x> \frac{2+2\sqrt{7}}{3}$

8 tháng 4 2021

ĐK: \(x\ge4;x\le0\)

TH1: \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\Rightarrow bpt\) đúng

TH2: \(x\ne0;x\ne4\)

Bất phương trình tương đương:

\(\dfrac{x^2-3x+2}{x-3}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{x-3}\ge0\)

Lập bảng xét dấu:

Dựa vào bảng xét dấu, bất phương trình có nghiệm \(x\in\left[1;2\right]\cup\left(3;+\infty\right)\)

Kết luận: Bất phương trình đã cho có tập nghiệm \(x\in\left[1;2\right]\cup\left(3;+\infty\right)\cup\left\{0\right\}\)

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.

9 tháng 12 2017

lớp 10 học trường mô đây ?

NV
12 tháng 3 2021

ĐKXĐ: \(x>\dfrac{3}{2}\)

\(\Leftrightarrow3-\left(2x-3\right)>2\sqrt{2x-3}\)

\(\Leftrightarrow3-x>\sqrt{2x-3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-x\ge0\\x^2-6x+9>2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x^2-8x+12\ge0\end{matrix}\right.\) \(\Rightarrow x\le2\)

Kết hợp ĐKXĐ \(\Rightarrow\dfrac{3}{2}< x\le2\)

26 tháng 2 2020

1) ĐK: \(x\ge-1\)

\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)

<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)

TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)

(1) luôn đúng 

Th2: x\(>-\frac{1}{3}\)

<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)

<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)

<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm 

 Vì với x \(>-\frac{1}{3}\)

ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)

\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)

=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x

=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)

Vậy \(x< -\frac{1}{3}\)

26 tháng 2 2020

Xin lỗi bạn kết luận bài 1 là:

\(-1\le x\le-\frac{1}{3}\)

Bài 2)  \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)

ĐK: \(x\ge-2\)

(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)

<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)

<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)

<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)

<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)

<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)

(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)

(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)

Kết luận:...