Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b: \(=\dfrac{x}{2\left(x-3\right)}+\dfrac{4}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x^2+3x+8}{2\left(x-3\right)\left(x+3\right)}\)
c: \(=\dfrac{\left(x+1\right)^2}{\left(x-1\right)^2}\cdot\dfrac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=\dfrac{4}{2}=2\)
d: \(=\dfrac{2x+1}{x-2}\cdot\dfrac{-\left(x-2\right)}{2x+1}=-1\)
a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)
=>-12x-4=2x-10
=>-14x=-6
hay x=3/7
b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
hay x=3/5(loại)
c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)
\(\Leftrightarrow x^2+3x-1=x^2-x+1\)
=>4x=2
hay x=1/2(nhận)
a)
\(4x-10< 0\\ 4x< 10\\ x< \dfrac{10}{4}=\dfrac{5}{2}\)
b)
\(2x+x+12\ge0\\ 3x\ge-12\\ x\ge-\dfrac{12}{3}=-4\)
c)
\(x-5\ge3-x\\ 2x\ge8\\ x\ge4\)
d)
\(7-3x>9-x\\ -2>2x\\ x< -1\)
đ)
\(2x-\left(3-5x\right)\le4\left(x+3\right)\\ 2x-3+5x\le4x+12\\ 3x\le15\\ x\le5\)
e)
\(3x-6+x< 9-x\\ 5x< 15\\ x< 3\)
f)
\(2t-3+5t\ge4t+12\\ 3t\ge15\\ t\ge5\)
g)
\(3y-2\le2y-3\\ y\le-1\)
h)
\(3-4x+24+6x\ge x+27+3x\\ 0\ge2x\\ 0\ge x\)
i)
\(5-\left(6-x\right)\le4\left(3-2x\right)\\ 5-6+x\le12-8x\\ \\ 9x\le13\\ x\le\dfrac{13}{9}\)
k)
\(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\\ 10x-15-20x+28\ge19-2x-22\\ 13-10x\ge-2x-3\\ -8x\ge-16\\ x\le\dfrac{-16}{-8}=2\)
l)
\(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\\ \dfrac{40x-100}{60}-\dfrac{90x-30}{2}< \dfrac{36-12x}{60}-\dfrac{30x-15}{60}\\ \Rightarrow40x-100-90x+30< 36-12x-30x+15\\ 130-50x< 51-42x\\ 92x< -79\\ x< -\dfrac{79}{92}\)
m)
\(5x-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+x\\ \dfrac{10x}{2}-\dfrac{3-2x}{2}>\dfrac{7x-5}{2}+\dfrac{2x}{2}\\ \Rightarrow10x-3+2x>7x-5+2x\\ 12x-3>9x-5\\ 3x>-2\\ x>-\dfrac{2}{3}\)
n)
\(\dfrac{7x-2}{3}-2x< 5-\dfrac{x-2}{4}\\ \dfrac{28x-8}{12}-\dfrac{24x}{12}< \dfrac{60}{12}-\dfrac{3x-6}{12}\\ \Rightarrow28x-8-24x< 60-3x+6\\ 4x-8< -3x+66\\ 7x< 74\\ x< \dfrac{74}{7}\)
a) \(4x-10< 0\)
\(\Leftrightarrow4x< 10\)
\(\Leftrightarrow x< \dfrac{5}{2}\)
b) ???
c) \(x-5\ge3-x\)
\(\Leftrightarrow2x-5\ge3\)
\(\Leftrightarrow2x\ge8\)
\(\Leftrightarrow x\ge4\)
d) \(7-3x>9-x\)
\(\Leftrightarrow7-2x>9\)
\(\Leftrightarrow-2x>2\)
\(\Leftrightarrow x< -1\)
đ) ???
e) \(3x-6+x< 9-x\)
\(\Leftrightarrow4x-6< 9-x\)
\(\Leftrightarrow5x-6< 9\)
\(\Leftrightarrow5x< 15\)
\(\Leftrightarrow x< 3\)
f) ???
g) ???
h) \(3-4x+24+6x\ge x+27+3x\)
\(\Leftrightarrow2x+27\ge4x+27\)
\(\Leftrightarrow-2x\ge0\)
\(\Leftrightarrow x\le0\)
i) \(5-\left(6-x\right)\le4\left(3-2x\right)\)
\(\Leftrightarrow5-6+x\le12-8x\)
\(\Leftrightarrow x-1\le12-8x\)
\(\Leftrightarrow9x-1\le12\)
\(\Leftrightarrow9x\le13\)
\(\Leftrightarrow x\le\dfrac{13}{9}\)
k) \(5\left(2x-3\right)-4\left(5x-7\right)\ge19-2\left(x+11\right)\)
\(\Leftrightarrow10x-15-20x+28\ge19-2x-22\)
\(\Leftrightarrow-10x+23\ge-3-2x\)
\(\Leftrightarrow-8x+13\ge-3\)
\(\Leftrightarrow-8x\ge-16\)
\(\Leftrightarrow x\ge2\)
l) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}< \dfrac{3-x}{5}-\dfrac{2x-1}{4}\)
\(\Leftrightarrow-\dfrac{5}{6}x-\dfrac{7}{6}< -\dfrac{7}{10}x+\dfrac{17}{20}\)
\(\Leftrightarrow-\dfrac{2}{15}x-\dfrac{7}{6}< \dfrac{17}{20}\)
\(\Leftrightarrow-\dfrac{2}{15}x< \dfrac{121}{60}\)
\(\Leftrightarrow x>-\dfrac{121}{8}\)
m, n) làm tương tự:
đáp án: m. \(x>-\dfrac{2}{3}\); n. \(x< \dfrac{74}{7}\)
a/ ĐKXĐ: \(x\ne2;3\)
\(\dfrac{x+3}{x-2}+\dfrac{5}{\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-3\right)+5}{\left(x-2\right)\left(x-3\right)}=0\)
\(\Leftrightarrow x^2-9+5=0\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\left(l\right)\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne\pm\dfrac{3}{4}\)
\(\dfrac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}+\dfrac{3x-7}{4x-3}-\dfrac{6x+5}{4x+3}=0\)
\(\Leftrightarrow12x^2+30x-21+\left(3x-7\right)\left(4x+3\right)-\left(6x+5\right)\left(4x-3\right)=0\)
\(\Leftrightarrow9x-27=0\Rightarrow x=3\)
c/ ĐKXĐ: \(x\ne-1;2\)
\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}-\dfrac{4}{x+1}+\dfrac{2}{x-2}=0\)
\(\Leftrightarrow x+3-4\left(x-2\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow-x+13=0\)
\(\Rightarrow x=13\)
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)