Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)
Ta có :
\(-\left(2x-6\right)^4\le0\forall x\)
\(\Rightarrow-\left(2x-6\right)^4+9\le9\forall x\)
Dấu \("="\)<=> \(-\left(2x-6\right)^4=0\Leftrightarrow\left(2x-6\right)^4=0\Leftrightarrow2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
Vậy GTLN của \(A\)là 9 \(\Leftrightarrow x=3\)
Bài 2 :
Điều kiện : n khác -2 ; n thuộc Z
Để G nhỏ nhất
<=> 3 + 10/n + 2 nhỏ nhất
<=> 10/n+2 nhỏ nhất
<=> n + 2 < 0 ; n + 2 thuộc Ư ( 10 ) ; n + 2 lớn nhất
<=> n + 2 = -1
<=> n = -1 - 2
<=> n = -3
Vậy G đạt GTNN <=> n = -3
a/ Vì: \(\left(2x+\dfrac{1}{3}\right)^4\ge0\) với mọi x
=> \(\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
dấu ''='' xảy ra khi :
\(2x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy MinA = -1 <=> \(x=-\dfrac{1}{6}\)
b/ Vì: \(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\Rightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)
=> \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
dấu ''='' xảy ra khi :
\(-\dfrac{4}{9}x-\dfrac{2}{15}=0\Leftrightarrow x=-\dfrac{3}{10}\)
vậy MaxB = 3 khi \(x=-\dfrac{3}{10}\)
a: =>5x=3x-6
=>2x=-6
hay x=-3
b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)
=>x-3=10 hoặc x-3=-10
=>x=13 hoặc x=-7
c: \(\left|x^3+1\right|+2\ge2\forall x\)
Dấu '=' xảy ra khi x=-1
a) Ta có: \(\left|2x-1\right|\ge\) 0 (với mọi x)
=> \(5-\left|2x-1\right|\) ≤ 5 (Với mọi x)
Hay A ≤ 5 => Max A = 5 dấu"="xảy ra khi:
\(2x-1=0\)
<=> \(x=\dfrac{1}{2}\)
Ta cos : \(\left|x-1\right|\ge0\)(với mọi x)
<=> \(\left|x-1\right|+3\ge3\)(với mọi x)
<=> \(\dfrac{1}{\left|x-1\right|+3}\ge\dfrac{1}{3}\) (với mọi x)
Hay B ≥ \(\dfrac{1}{3}\) : dấu "=" xảy ra khi : \(x-1=0\)
=> \(x=1\)
\(a)\) Ta có :
\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x )
\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x )
\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) )
Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)
\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)
\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)
\(\Leftrightarrow\)\(x=\frac{-1}{3}\)
Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)
Chúc bạn học tốt ~
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)