\(\frac{2019}{1}\)+\(\frac{2018}{2}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Ta có:\(\frac{2019}{1}\)+\(\frac{2018}{2}\)+...+\(\frac{2}{2018}\)+\(\frac{1}{2019}\)

       = (1+1+1+...+1) +\(\frac{2018}{2}\)+...+\(\frac{2}{2018}\)+\(\frac{1}{2019}\)

       =\((\)1+\(\frac{2018}{2}\)\()\)+...+\((\)1+\(\frac{2}{2018}\)\()\)+\((\)1+\(\frac{1}{2019}\)\()\) +1

       =\(\frac{2020}{2}\) +...+\(\frac{2020}{2018}\)+\(\frac{2020}{2019}\)+\(\frac{2020}{2020}\)  

       =2020\(\times\)\((\)\(\frac{1}{2}\)+...+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)

\(\)\(\Rightarrow\)G=2020\(\times\)\((\)\(\frac{1}{2}\)+...+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)\(\div\)\((\)\(\frac{1}{2}\)+\(\frac{1}{3}\)+...+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)

                G=2020

Vậy G=2020

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

20 tháng 7 2019
https://i.imgur.com/dxNkIZN.jpg
19 tháng 7 2019

giúp mik giải nhé. Cảm ơn các bạn nhiềuyeu

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)

\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

---------------------

Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(\Rightarrow A>1> \frac{3}{4}> B\)

15 tháng 5 2019

thầy giải hay quá

26 tháng 4 2019

Ta có :

\(N=\frac{2018+2019+2020}{2019+2020+2021}\)

\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Leftrightarrow M>N\)

28 tháng 7 2020

Trả lời:

Ta có: 

\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)

hay \(M>N\)

Vậy \(M>N\)

14 tháng 5 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)

9 tháng 3 2019

a) Ta có : 

N = 2018 + 2019/2019 + 2020

   = 2018/2019 + 2020   +    2019/2019 + 2020

Ta thấy : 2018/2019 + 2020  <  2018/2019 ( Vì 2019 + 2020 > 2019 )

              2019/2019 + 2020  < 2019/2020 ( Vì 2019 + 2020 > 2020 )

=>  2018/2019 + 2020   +    2019/2019 + 2020  <   2018/2019  +  2019/2020

=> M > N

b) Mk ko bt làm !!

c) Ta có :

  19/31 > 1/2

  17/35 < 1/2

=> 19/31 > 17/35

d) Ta có :

   3535/3434 = 1 + 1/3534

   2323/2322 = 1 + 1/2322

Ta thấy : 

1/3534 < 1/2322 ( Vì 3534 > 2322 )

=> 1 + 1/3534 < 1 + 1/2322

=> 3535/3534 < 2323/2322

Hok tốt !

24 tháng 4 2019

\(M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...2018\)

\(\Rightarrow M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...673.674...2018\)

Vì \(\hept{\begin{cases}M⋮3\\M⋮673\end{cases}}\) mà \(\left(3,673\right)=1\) nên \(M⋮2019\left(đpcm\right)\)

24 tháng 4 2019

\(M=\left[\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1008}+\frac{1}{1011}\right)+\left(\frac{1}{1009}+\frac{1}{1010}\right)\right].\)\(2.3...1008.1009.1010.1011...2017.2018\)

\(=\left(\frac{2019}{2018}+\frac{2019}{2.2017}+...+\frac{2019}{1008.1011}+\frac{2019}{1009.1010}\right).2.3...1008.1009.1010.1011...2017.2018\)

\(=2019\left(\frac{1}{2018}+\frac{1}{2.2017}+...+\frac{1}{1008.1011}+\frac{1}{1009.1010}\right).2...1008.1009.1010.1011...2017.2018\)

\(=2019.\left(2...2017+3...2016.2018+...+2.3...1007.1009.1011...2018+2.3....1008.1011...2018\right)\)

Chia hết cho 2019