Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Lời giải:
\(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2020}\)
\(\Rightarrow 2B=\frac{2}{1.2}+\frac{2}{3.4}+\frac{2}{5.6}+....+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\( 2B< 1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
---------------------
Đặt \(2^{2018}=a; 3^{2019}=b; 5^{2020}=c(a,b,c>0)\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}> \frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(\Rightarrow A>1> \frac{3}{4}> B\)
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
a) Ta có :
N = 2018 + 2019/2019 + 2020
= 2018/2019 + 2020 + 2019/2019 + 2020
Ta thấy : 2018/2019 + 2020 < 2018/2019 ( Vì 2019 + 2020 > 2019 )
2019/2019 + 2020 < 2019/2020 ( Vì 2019 + 2020 > 2020 )
=> 2018/2019 + 2020 + 2019/2019 + 2020 < 2018/2019 + 2019/2020
=> M > N
b) Mk ko bt làm !!
c) Ta có :
19/31 > 1/2
17/35 < 1/2
=> 19/31 > 17/35
d) Ta có :
3535/3434 = 1 + 1/3534
2323/2322 = 1 + 1/2322
Ta thấy :
1/3534 < 1/2322 ( Vì 3534 > 2322 )
=> 1 + 1/3534 < 1 + 1/2322
=> 3535/3534 < 2323/2322
Hok tốt !
\(M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...2018\)
\(\Rightarrow M=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right).2.3.4...673.674...2018\)
Vì \(\hept{\begin{cases}M⋮3\\M⋮673\end{cases}}\) mà \(\left(3,673\right)=1\) nên \(M⋮2019\left(đpcm\right)\)
\(M=\left[\left(1+\frac{1}{2018}\right)+\left(\frac{1}{2}+\frac{1}{2017}\right)+...+\left(\frac{1}{1008}+\frac{1}{1011}\right)+\left(\frac{1}{1009}+\frac{1}{1010}\right)\right].\)\(2.3...1008.1009.1010.1011...2017.2018\)
\(=\left(\frac{2019}{2018}+\frac{2019}{2.2017}+...+\frac{2019}{1008.1011}+\frac{2019}{1009.1010}\right).2.3...1008.1009.1010.1011...2017.2018\)
\(=2019\left(\frac{1}{2018}+\frac{1}{2.2017}+...+\frac{1}{1008.1011}+\frac{1}{1009.1010}\right).2...1008.1009.1010.1011...2017.2018\)
\(=2019.\left(2...2017+3...2016.2018+...+2.3...1007.1009.1011...2018+2.3....1008.1011...2018\right)\)
Chia hết cho 2019
Ta có:\(\frac{2019}{1}\)+\(\frac{2018}{2}\)+...+\(\frac{2}{2018}\)+\(\frac{1}{2019}\)
= (1+1+1+...+1) +\(\frac{2018}{2}\)+...+\(\frac{2}{2018}\)+\(\frac{1}{2019}\)
=\((\)1+\(\frac{2018}{2}\)\()\)+...+\((\)1+\(\frac{2}{2018}\)\()\)+\((\)1+\(\frac{1}{2019}\)\()\) +1
=\(\frac{2020}{2}\) +...+\(\frac{2020}{2018}\)+\(\frac{2020}{2019}\)+\(\frac{2020}{2020}\)
=2020\(\times\)\((\)\(\frac{1}{2}\)+...+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)
\(\)\(\Rightarrow\)G=2020\(\times\)\((\)\(\frac{1}{2}\)+...+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)\(\div\)\((\)\(\frac{1}{2}\)+\(\frac{1}{3}\)+...+\(\frac{1}{2019}\)+\(\frac{1}{2020}\)\()\)
G=2020
Vậy G=2020