Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:
c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
riêng câu này ta thay x = 9 vào luôn, vậy ta có:
\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)
\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)
\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)
\(=-9+10\)
\(=1\)
a) \(x^2-10x+9=x^2-x-9x+9=x\left(x-1\right)-9\left(x-1\right)=\left(x-1\right)\left(x-9\right)\)
b)\(x^2-10x+21=x^2-3x-7x+21=x\left(x-3\right)-7\left(x-3\right)=\left(x-3\right)\left(x-7\right)\) c)\(x^2-2x-3=x^2+x-3x-3=x\left(x+1\right)-3\left(x+1\right)=\left(x+1\right)\left(x-3\right)\)d)\(x^2-10x+16=x^2-2x-8x+16=x\left(x-2\right)-8\left(x-2\right)=\left(x-2\right)\left(x-8\right)\)e)\(x^2-2x-8=x^2+2x-4x-8=x\left(x+2\right)-4\left(x+2\right)=\left(x+2\right)\left(x-4\right)\)f)\(x^2-2x-48=x^2+6x-8x-48=x\left(x+6\right)-8\left(x+6\right)=\left(x+6\right)\left(x-8\right)\)g)\(x^2-10x+24=x^2-4x-6x+24=x\left(x-4\right)-6\left(x-4\right)=\left(x-4\right)\left(x-6\right)\)i)mình nghĩ câu này bị sai nên mình k giải đc. Mình nghĩ đề là \(x^4+3x^2-4\)
j)\(x^2-2x-15=x^2-3x+5x-15=x\left(x-3\right)+5\left(x-3\right)=\left(x-3\right)\left(x+5\right)\)
chúc bạn học tốt........
a,x2 - 10x + 9 = x2 - x - 9x + 9 = x(x - 1) - 9(x - 1) = (x - 9)(x - 1)
b,x2 - 10x + 21 = x2 - 3x - 7x + 21 = x(x - 3) - 7(x - 3)
c,x2 - 2x - 3 = x2 + x - 3x - 3 = x(x + 1) - 3(x + 1) = (x - 3)(x + 1)
d,x2 - 10x + 16 = x2 - 2x -8x + 16= x(x - 2) - 8(x - 2) = (x - 8)(x - 2)
e,x2 - 2x - 8 = x2 + 2x - 4x - 8 = x(x + 2) - 4(x + 2) = (x - 4)(x + 2)
f,x2 - 2x - 48 = x2 - 8x + 6x - 48 = x(x - 8) + 6(x - 8) = (x + 6)(x - 8)
g,x2 - 10x + 24 = x2 - 4x - 6x + 24 = x(x - 4) - 6(x - 4) = (x - 6)(x - 4)
j,x2 - 2x - 15 = x2 + 3x - 5x -15 = x(x + 3) - 5(x + 3) = (x - 5)(x + 3)
a) x2 + 5x + 4
= x2 + x + 4x + 4
= x (x+1) + 4 (x+1)
= (x+1) ( x+4)
c) x2 - 7x + 12
= x2 - 3x - 4x +12
= x(x-3) - 4(x-3)
= (x-3)( x-4)
m) \(5x^2+6x+1\)
\(=5x^2+5x+x+1\)
\(=5x\left(x+1\right)+\left(x+1\right)\)
\(=\left(5x+1\right)\left(x+1\right)\)
c) \(x^2-10x+16=x^2-2x-8x+16=x\cdot\left(x-2\right)-8\cdot\left(x-2\right)=\left(x-8\right)\cdot\left(x-2\right)\)
a)
\(14x^2y-21xy^2+28x^2y^2\)
\(=7xy(2x-3y+4xy)\)
b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)
c)
\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)
\(=(x-y)(10x+8)=2(x-y)(5x+4)\)
a. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
b. \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c. \(10x\left(x-y\right)-8\left(y-x\right)\)
\(=10x\left(x-y\right)+8\left(x-y\right)\)
\(=\left(10x+8\right)\left(x-y\right)\)
d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)
g. \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y^2\right)-4z^2\right]\)
\(=5\left(x-y+z\right)\left(x-y-z\right)\)
h. \(x^3-x+3x^2y+3xy^3+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
i. \(x^2+7x-8\)
\(=x^2-x+8x-8\)
\(=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right)\left(x-1\right)\)
g: \(=-\left(x^2+3x-4\right)=-\left(x+4\right)\left(x-1\right)\)
h: \(=-\left(7x^2+x-8\right)\)
\(=-\left(7x^2+8x-7x-8\right)=-\left(7x+8\right)\left(x-1\right)\)
i: =(x-2)(x-8)