K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 3 2018

Lời giải:

Ta có: \(f(x)=\sin ^4x+\cos ^4x=(\sin ^2x)^2+(\cos ^2x)^2+2\sin ^2x\cos ^2x-2\sin ^2x\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-\frac{1}{2}(2\sin x\cos x)^2\)

\(=1-\frac{1}{2}\sin ^2(2x)\)

Do đó: \(f'(x)=[1-\frac{1}{2}\sin ^2(2x)]'=-\frac{1}{2}.2.\sin 2x(\sin 2x)'\)

\(=-2\sin 2x.\cos 2x=-\sin 4x\)

Và: \(g(x)=\frac{1}{4}(\cos 4x)\Rightarrow g'(x)=\frac{1}{4}.(4x)'-\sin (4x)=-\sin 4x\)

Do đó: \(f'(x)=g'(x)\)

a: ĐKXĐ; 1-sin x>=0

=>sin x<=1(luôn đúng)

b: ĐKXĐ: 1-cosx>=0

=>cosx<=1(luôn đúng)

c: ĐKXĐ: 1-cos2x>=0

=>cos2x<=1

=>-1<=cosx<=1(luôn đúng)

 

NV
20 tháng 5 2020

a/ \(f'\left(x\right)=2sinx.cosx-2sinx=0\)

\(\Leftrightarrow2sinx\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\) \(\Rightarrow x=k\pi\)

b/ \(f'\left(x\right)=cosx+sin4x+sin6x=0\)

\(\Leftrightarrow cosx+2sin5x.cosx=0\)

\(\Leftrightarrow cosx\left(2sin5x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\\sin5x=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\5x=-\frac{\pi}{6}+k2\pi\\5x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=-\frac{\pi}{30}+\frac{k2\pi}{5}\\x=-\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)

20 tháng 5 2020

Mình cảm ơn bạn, bạn có thể giúp mình làm thêm một số bài nữa được không ạ?

NV
18 tháng 10 2020

e.

\(3\left(1-sin^2x\right)-5sinx-1=0\)

\(\Leftrightarrow-3sin^2x-5sinx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{3}\\sinx=-2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

f.

\(2\left(2cos^2x-1\right)-cosx+7=0\)

\(\Leftrightarrow4cos^2x-cosx+5=0\)

Phương trình vô nghiệm

NV
18 tháng 10 2020

g.

\(\Leftrightarrow\sqrt{2}sin\left(4x+\frac{\pi}{4}\right)=2\)

\(\Leftrightarrow sin\left(4x+\frac{\pi}{4}\right)=\sqrt{2}>1\)

Phương trình vô nghiệm

h.

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

b: \(y=\dfrac{1}{2}\sin4x-1\)

\(-1< =\sin4x< =1\)

\(\Leftrightarrow-\dfrac{1}{2}< =\dfrac{1}{2}\cdot\sin4x< =\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{3}{2}< =\dfrac{1}{2}\cdot\sin4x-1< =-\dfrac{1}{2}\)

Do đó: \(y_{max}=\dfrac{-1}{2}\) khi \(4x=\dfrac{\Pi}{2}+k\Pi\)

hay \(x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)

\(y_{min}=\dfrac{-3}{2}\) khi \(4x=-\dfrac{\Pi}{2}+k\Pi\)

hay \(x=-\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)

g: \(0>=-2\left|\cos x\right|>=-2\)

\(\Leftrightarrow5>=-2\left|\cos x\right|+5>=3\)

Do đó: \(y_{max}=5\) khi \(\)\(\cos x=0\)

hay \(x=\dfrac{\Pi}{2}+k\Pi\)

\(y_{min}=3\) khi \(\cos x=-1\)

hay \(x=-\Pi+k2\Pi\)

NV
18 tháng 3 2019

1/ \(y'=\frac{\sqrt{9-x^2}-x\left(\sqrt{9-x^2}\right)'}{9-x^2}=\frac{\sqrt{9-x^2}+\frac{x^2}{\sqrt{9-x^2}}}{9-x^2}=\frac{9}{\left(9-x^2\right)\sqrt{9-x^2}}\)

2/ \(y'=\frac{\left(\sqrt{x^2+x+3}\right)'.\left(2x+1\right)-2\sqrt{x^2+x+3}}{\left(2x+1\right)^2}=\frac{\frac{\left(2x+1\right)}{2\sqrt{x^2+x+3}}.\left(2x+1\right)-2\sqrt{x^2+x+3}}{\left(2x+1\right)^2}\)

\(=\frac{\left(2x+1\right)^2-4\left(x^2+x+3\right)}{2\left(2x+1\right)^2\sqrt{x^2+x+3}}=\frac{-11}{2\left(2x+1\right)^2\sqrt{x^2+x+3}}\)

3/ \(y'=3\left(1+tan^23x\right)=3+3tan^23x\)

4/ \(y'=\frac{\left(cosx-sinx\right)\left(sinx-cosx\right)-\left(cosx+sinx\right)\left(sinx+cosx\right)}{\left(sinx-cosx\right)^2}\)

\(=-\frac{\left(sinx-cosx\right)^2+\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)^2}=-\frac{sin^2x+cos^2x-2sinxcosx+sin^2x+cos^2x+2sinxcosx}{sin^2x+cos^2x-2sinxcosx}\)

\(=\frac{-2}{1-sin2x}\)

5/ \(y'=4x+\frac{1}{2\sqrt{x}}-\frac{\pi}{2}cos\left(\frac{\pi x}{2}\right)\)

6/ \(y'=3sin^2\left(1-3x\right).\left(sin\left(1-3x\right)\right)'=3sin^2\left(1-3x\right).cos\left(1-3x\right).\left(1-3x\right)'\)

\(=-9sin^2\left(1-3x\right).cos\left(1-3x\right)\)

29 tháng 7 2020

\(\text{1) }3sinx-4cosx=1\\ \Leftrightarrow cos^2x+\left(\frac{4cosx+1}{3}\right)^2=1\\ \Leftrightarrow cosx=\frac{-4\pm6\sqrt{6}}{25}\\ \\ \Leftrightarrow x=arccos\left(\frac{-4\pm6\sqrt{6}}{25}\right)+k2\pi\)

\(2\text{) }\sqrt{3}sinx-cosx=1\\ \Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}\\ \Leftrightarrow cos\frac{\pi}{6}\cdot sinx-sin\frac{\pi}{6}\cdot cosx=\frac{1}{2}\\ \Leftrightarrow sin\left(x-\frac{\pi}{6}\right)=sin\frac{\pi}{6}\\ \Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=\frac{\pi}{6}+a2\pi\\x-\frac{\pi}{6}=\frac{5\pi}{6}+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\pi+b2\pi\end{matrix}\right.\)

\(3\text{) }\sqrt{3}cosx+sinx=-2\\ \Leftrightarrow\frac{\sqrt{3}}{2}cosx+\frac{1}{2}sinx=-1\\ \Leftrightarrow sin\frac{\pi}{3}\cdot cosx+cos\frac{\pi}{3}\cdot sinx=-1\\ \Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=-1=sin\frac{3\pi}{2}\\ \\ \Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{2}+k2\pi\\ \Leftrightarrow x=\frac{7\pi}{6}+k2\pi\)

\(4\text{) }cos4x-sin4x=1\\ \Leftrightarrow cos^24x+\left(cos4x-1\right)^2=1\\ \\ \Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+a\pi\\4x=b2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{a\pi}{4}\\x=\frac{b\pi}{2}\end{matrix}\right.\)

29 tháng 7 2020

\(5\text{) }\sqrt{3}cos4x+sin4x-2cos3x=0\\ \Leftrightarrow\frac{\sqrt{3}}{2}cos4x+\frac{1}{2}sin4x=cos3x\\ \Leftrightarrow cos\frac{\pi}{3}\cdot cos4x+sin\frac{\pi}{3}\cdot sin4x=cos3x\\ \Leftrightarrow cos\left(4x-\frac{\pi}{3}\right)=cos3x\\ \Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{3}=3x+a2\pi\\4x-\frac{\pi}{3}=-3x+b2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+a2\pi\\x=\frac{\pi}{21}+\frac{b2\pi}{7}\end{matrix}\right.\\ \Leftrightarrow x=\frac{\pi}{21}+\frac{k2\pi}{7}\)

\(6\text{) }cos^2x=3sin2x+3\\ \Leftrightarrow\frac{cos2x+1}{2}=3sin2x+3\)

Giải tương tự vd 1 và 4

7) Giải tương tự vd 1 và 4