\(a\cdot x^3+b\cdot x^2+c\cdot x+d\)và f(5)-f(4)=2012.CM f(7)-f(2) là hợp số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)

8 tháng 1 2020

dễ mà bn

3 tháng 1 2019

y = f(x) = a . x2 + b . x + c ( a , b , c ∈ Q )

+) f(-2) = a . ( -2 )2 + b . ( -2 ) + c

= a . 4 + b . ( -2 ) + c

= 2 ( 2a - b + c ) ⇒ y = 2( 2a - b + c )

+) f(-3) = a . ( -3 )2 + b . ( -3 ) + c

= a . 9 - b . 3 + c

= 3 ( 3a - b + c ) ⇒ y = 3( 3a - b + c )

11 tháng 4 2021

a, Ta có :  \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay 

\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)

\(\Rightarrow h\left(x\right)=x^2+5x\)

b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0 

Đặt \(k\left(x\right)=7x^2-35x+42=0\)

\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)

Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2

10 tháng 4 2021

xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là 

\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)

bị sai mỗi thế thôi ạ mọi người giúp em với ạ

4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
4 tháng 1 2020

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
21 tháng 6 2018

Giải:

a) \(\dfrac{1}{4}+x-\dfrac{1}{4}x=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{4}+\dfrac{3}{4}x=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{3}{4}x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy ...

b) \(\left|x^2-2x\right|+\left|x\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x^2-2x\right|=0\\\left|x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow x=0\)

Vậy ...

c) \(\left|3x^2-2x\right|=x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-2x=x\\3x^2-2x=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2=3x\\3x^2=x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2-3x=0\\3x^2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x\left(x-1\right)=0\\x\left(3x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

21 tháng 6 2018

Cảm ơn bn. Bn có thể giúp mk 2 p cuối ko???

4 tháng 1 2020

a) \(f\left(x\right)=2.\left(x^2\right)^n-5.\left(x^n\right)^2+8n^{n-1}.x^{1+n}-4.x^{n^2+1}.x^{2n-n^2-1}\)

\(=2x^{2n}-5x^{2n}+8x^{2x}-4x^{2n}\)

\(=x^{2n}\)

b) \(f\left(x\right)+2020=x^{2n}+2020\)

Vì \(n\in N\Rightarrow2n\in N\)và 2n là số chẵn

\(\Rightarrow x^{2n}\ge1\)

\(\Rightarrow x^{2n}+2020\ge2021\)

Dấu"="xảy ra \(\Leftrightarrow x^{2n}=1\)

                      \(\Leftrightarrow n=0\)

Vậy ...

( ko bít đúng ko -.- )