Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
a) f(x) - g(x) - h(x) = (x3-2x2+3x+1)-(x3+x-1)-(2x2-1)
=x3- 2x2+3x + 1 -x3-x+1 - 2x2+1
= ( x3-x3)+(-2x2-2x2) + (3x-x)+(1 + 1 + 1 )
= -4x2 + 2x +3
f(x)-g(x)+h(x)=2x+1=0 nên x=-1/2
vậy khi x=-1/2 thì f(x)-g(x)+h(x)=0
Lời giải:
a)
$f(x)-g(x)=x^3-2x^2+3x+1-(x^3+x-1)$
$=(x^3-x^3)-2x^2+(3x-x)+(1+1)=-2x^2+2x+2$
b)
$f(x)-g(x)+h(x)=0$
$-2x^2+2x+2+2x^2-1=0$
$2x+1=0$
$x=\frac{-1}{2}$
Vậy $x=\frac{-1}{2}$
ta co : F{x} - G{x} +H{x} = 2x^2 - 1
ma F{x} -G{X} +H{x} = 5
2x^2 - 1 = 5
2x^2 =5+1
2X^2= 6
x^2= 6: 2
x^2= 3
[x=\(-\sqrt{3}\)
[x= \(\sqrt{3}\)
vay x=\(\sqrt{3}\)
x=\(-\sqrt{3}\)
a,f(x)-g(x)+h(x)=2x-`1
b,đặt S(x)=f(x)-g(x)+h(x)
S(x)=0<=>2x+1=0=>x=\(\dfrac{-1}{2}\)
\(a.\) \(f\left(x\right)=x^3-2x^2+3x+1\)
\(-\)\(g\left(x\right)=x^3\) \(+x\) \(-1\)
\(+\)\(h\left(x\right)=\) \(3x^2\)\(-2x-3\)
\(-------\)
\(=\) \(-5x^2\) \(-1\)
a,f(x+g(x)=x\(^3\) - 2x\(^2\) +3x +1+ x\(^3\) +x-1
=\(2x^3-x^2\)+4x
b, đặt f(x)+g(x)=m(x)
m(-1)=\(2.\left(-1\right)^3\)\(+1^2\)\(+4.\left(-1\right)\)
=-2+1-4
=-5
m(-2)=\(2.\left(-2\right)^3\)\(+2^2\)\(+4.\left(-2\right)\)
=-16+4-8
=-20
Mấy bạn trả lời giùm mình , mình like cho
Bài này hơi khó!!