K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2019

\(\left(x+10\right)\left(x^2+144\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+10=0\\x^2+144=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-10\\\left(ktm\right)\end{cases}}\)

Vậy Đa thức có nghiệm duy nhất là - 10

1 tháng 6 2019

\(\left(x-9\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-9=0\\x-12=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=9\\x=12\end{cases}}\)

Vậy đa thức có hai nghiệm là 9 và 12

2 tháng 7 2024

Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a

24 tháng 5 2021

1. Cho đa thức f (x) thỏa mãn ( x\(^2\) - 4x + 3) .f ( x + 1 ) = (x - 2).f ( x - 1 ). Chứng tỏ đa thức f (x) có ít nhất 3 nghiệm.

\(\left(x^2-4x+3\right).f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\)     

\(\text{* Thay}\)\(x=2\)\(,\)\(\text{ta có:}\)

\(\left(2^2-4.2+3\right)f\left(2+1\right)=\left(2-2\right)f\left(2-1\right)\)

\(\rightarrow\left(4-8+3\right)f\left(3\right)=0.f\left(1\right)\)

\(\rightarrow\left(-1\right).f\left(3\right)=0\)

\(\rightarrow f\left(3\right)=0\)

\(\rightarrow x=3\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=1\)\(,\)\(\text{ta có:}\)

\(\left(1^2-4.1+3\right)f\left(1+1\right)=\left(1-2\right).f\left(1-1\right)\)

\(\rightarrow\left(1-4+3\right).f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0.f\left(2\right)=-1.f\left(0\right)\)

\(\rightarrow0=\left(-1\right).f\left(0\right)\)

\(\rightarrow f\left(0\right)=0\)

\(\rightarrow x=0\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{* Thay}\)\(x=3\)\(,\)\(\text{ta có:}\)

\(\left(3^2-4.3+3\right).f\left(3+1\right)=\left(3-2\right).f\left(3-1\right)\)

\(\rightarrow\left(9-12+3\right).f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0.f\left(4\right)=1.f\left(2\right)\)

\(\rightarrow0=1.f\left(2\right)\)

\(\rightarrow f\left(2\right)=0\)

\(\rightarrow x=2\)\(\text{là một nghiệm của}\)\(f\left(x\right)\)

\(\text{Vậy ...}\)

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +bBài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,yBài 3: Cho đa thức f(x) = x2 +4x -5a) Số -5 có phải nghiệm của đa thức f(x) ko?b) Viết tập hợp S tất cả các nghiệm của f(x)Bài 4: Thu gọn rồi tìm...
Đọc tiếp

Mọi người giúp em/ mình mấy bài này được ko ạ, cảm ơn nhìu ạ ^_^ :3 <3 ^3^ :>

Bài 1: Xác định a và b để nghiệm của f(x) = (x-3)(x-4) cũng là nghiệm của g(x)= x2 - ax +b

Bài 2: Các số x,y (x,y khác 0) thoả mãn các điều kiện x2y +5= -3 và xy2 -7= 1 . Tìm x,y

Bài 3: Cho đa thức f(x) = x2 +4x -5

a) Số -5 có phải nghiệm của đa thức f(x) ko?

b) Viết tập hợp S tất cả các nghiệm của f(x)

Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:

a) f(x) = x(1-2x) + (2x -x +4)

b) g(x)= x(x-5) -x(x+2) +7x

c) h(x) = x(x-1) +1

Bài 5: Cho 

f(x)=x-101x7+101x6-101x5+...+101x2 -101x +25 . Tính f(100)

Bài 6: Cho f(x) = ax+ bx +c . Biết 7a +b = 0

Hỏi f(10) , f(-3) có thể là số âm ko?

Bài 7: Tam thức bậc hai là đa thức có dạng f(x) = ax2+ bx +c với a,b,c là hằng số khác 0

Hãy xác định các hệ số a,b biết f(1)=2;f(3)=8

Bài 8: Cho f(x)= ax+ 4x(x -1) +8 

g(x) = x3 -4x(bx +1) +c -3

trong đó a,b,c là hăngf . Xác định a,b,c để f(x) = g(x)

Bài 9: Cho f(x) = 2x+ ax +4 ( a là hằng)

g(x)= x2 -5x - b ( b là hằng)

Tìm các hệ số a,b sao cho f(1)=g(2) ;f(-1)= f(5)

 

 

 

1

rtyuiytre

27 tháng 6 2024

2\(x^3\) - 8\(x^2\) + 9\(x\) = 0

\(x\)(2\(x^2\)  - 8\(x\) + 9) = 0

\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)

 2\(x^2\) - 8\(x\) + 9 = 0 

2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0

(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0

2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0

  2(\(x-2\))(\(x\) - 2) + 1 = 0

   2(\(x-2\))2 + 1 = 0 (vô  lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2  +1 ≥ 1 > 0

Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0

 

 

 

20 tháng 4 2015

mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm