\(\frac{x}{y}=\frac{3}{4}\)và 2x+5y=10

21x=19yvà x-y =4

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

a) Ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)

\(x=\frac{5}{13}.3=\frac{15}{13}\)

\(y=\frac{5}{13}.4=\frac{20}{13}\)

b) Ta có: \(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

x = (-2) x 19 = -38

y = (-2) x 21 = -42

c) Ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)

\(x^2=\frac{1}{4}.25=\frac{25}{4}\Rightarrow x=+_-\frac{5}{2}\)

\(y^2=\frac{1}{4}.9=\frac{9}{4}\Rightarrow+_-\frac{3}{2}\)

nha bạn!

17 tháng 10 2016

\(\frac{x}{y}=\frac{3}{4}\)và 2x + 5y = 10

=> \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{2x}{6}=\frac{5y}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{10}{26}=\frac{5}{13}\)

=> 2x = \(\frac{30}{13}\)=> x = \(\frac{15}{13}\)

     5y = \(\frac{100}{13}\)=> y = \(\frac{20}{13}\)

Vậy x = \(\frac{15}{13}\); y = \(\frac{20}{13}\)

21x = 19y và x - y = 4

Ta có :

\(\frac{x}{19}=\frac{y}{21}\)và x - y = 4

Áp dụng tính chất của dayc tỉ số bằng nhau là :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

=> x = -38

     y = -42

Vậy x = - 38 ; y = - 42

\(\frac{x}{5}=\frac{y}{3}\)và x 2 - y 2 = 4

Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

=> x = 5k , y = 3k

=> x 2 - y 2 = ( 5 k ) 2 - ( 3 k ) 2 = 25k 2 - 9 k = 4

                                                  16 k 2        = 4

                                                       k 2        = \(\frac{1}{4}\)

                                            => k = \(\frac{1}{2}\)hoặc x = \(\frac{-1}{2}\)

+ Xét k = \(\frac{1}{2}\)ta có :

=> x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)

+Xét  k = \(\frac{-1}{2}\)

=> x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)

Vậy x = \(\frac{5}{2}\)và y = \(\frac{3}{2}\)

hoặc x = \(\frac{-5}{2}\), y = \(\frac{-3}{2}\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

V
14 tháng 7 2017

\(\frac{x}{5}=\frac{y}{-3}\) áp dụng t/c dãy TSBN =>\(\frac{x}{5}=\frac{y}{-3}=\frac{x^2+y}{5^2+\left(-3\right)}=\frac{34}{22}=\frac{17}{11}\)

\(\frac{x^2}{5^2}=\frac{17}{11}\Rightarrow x=....\)

\(\frac{y}{-3}=\frac{17}{11}\Rightarrow y=...\) cậu tự lm nhé

V
14 tháng 7 2017

2) đặt \(\frac{x}{4}=\frac{y}{5}=k\)  ta có \(\hept{\begin{cases}x=4k\\y=5k\\\end{cases}}\)\(\Rightarrow\)x.y=4k.5k=20

                                                                         => x.y=\(20.k^2\)=20

                                                                         =>\(k^2\)=1=>k=1

=>x=4k=4.1=4

y=5k=5.1=5

7 tháng 5 2019

1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)

\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)

\(=-\frac{1}{2}x^2y^2\)

2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)

\(=\frac{17}{6}x^2\)

3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)

\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)

\(=-\frac{67}{4}x^2y^3\)

4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)

\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)

\(=-\frac{97}{30}x^4y\)

5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)

\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)

\(=-\frac{5}{12}x^6y^8\)

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)