\(\frac{x+6}{1999}\)+ \(\frac{x+8}{1997}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

\(\frac{x+6}{1999}+\frac{x+8}{1997}=\frac{x+10}{1995}+\frac{x+12}{1993}\)

\(\Leftrightarrow\frac{x+6}{1999}+1+\frac{x+8}{1997}+1=\frac{x+10}{1995}+1+\frac{x+12}{1993}+1\)

\(\Leftrightarrow\frac{x+2005}{1999}+\frac{x+2005}{1997}=\frac{x+2005}{1995}+\frac{x+2005}{1993}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2005=0\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\ne0\right)\)

<=> x=-2005

Vậy x=-2005

19 tháng 4 2020

bạn chỉ cần cộng mỗi phân số với 1 là xong!

Vd: x+6/1999 +1 +x+8/1997 +1 = x+10/1995 +1 +x+12/1993 +1

(không quen sử dụng cái phần mềm này lắm nên mình không làm nốt được)

16 tháng 4 2020

a, \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+\frac{x+3}{63}-\frac{x+5}{61}-\frac{x+7}{59}=0\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1-\left(\frac{x+5}{61}+1\right)-\left(\frac{x+7}{59}+1\right)=0\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}\)=0

<=> \(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)

<=> x+66=0 \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)\)

<=> x=-66

16 tháng 4 2020

các câu còn lại cũng làm tương tự nhé

Giải các phương trình sau : ( biến đổi đặc biệt )a) \(\frac{x+1}{35}\)+ \(\frac{x+3}{33}\)= \(\frac{x+5}{31}\)+ \(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )b) \(\frac{x-10}{1994}\)+ \(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)+ \(\frac{x-4}{2000}\)+ \(\frac{x-2}{2002}\)= \(\frac{x-2002}{2}\)+ \(\frac{x-2000}{4}\)+ \(\frac{x-1988}{6}\)+ \(\frac{x-1996}{8}\)+ \(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử...
Đọc tiếp

Giải các phương trình sau : ( biến đổi đặc biệt )

a) \(\frac{x+1}{35}\)\(\frac{x+3}{33}\)\(\frac{x+5}{31}\)\(\frac{x+7}{29}\)( HD : cộng thêm 1 vào các hạng tử )

b) \(\frac{x-10}{1994}\)\(\frac{x-8}{1996}\)+\(\frac{x-6}{1998}\)\(\frac{x-4}{2000}\)\(\frac{x-2}{2002}\)\(\frac{x-2002}{2}\)\(\frac{x-2000}{4}\)\(\frac{x-1988}{6}\)\(\frac{x-1996}{8}\)\(\frac{x-1994}{10}\)( HD : trừ đi 1 vào các hạng tử ) 

c) \(\frac{x-1991}{9}\)\(\frac{x-1993}{7}\)\(\frac{x-1995}{5}\)\(\frac{x-1997}{3}\)\(\frac{x-1991}{1}\)\(\frac{x-9}{1991}\)\(\frac{x-7}{1993}\)\(\frac{x-5}{1995}\)\(\frac{x-3}{1997}\)\(\frac{x-1}{1999}\)( HD : trừ đi 1 vào các hạng tử )

d) \(\frac{x-85}{15}\)\(\frac{x-74}{13}\)\(\frac{x-67}{11}\)\(\frac{x-64}{9}\)= 10  ( Chú ý : 10 = 1 + 2 + 3 + 4 )

e) \(\frac{x-1}{13}\)\(\frac{2x-13}{15}\)\(\frac{3x-15}{27}\)\(\frac{4x-27}{29}\)( HD : Thêm hoặc bớt 1 vào các hạng tử )

 

1
16 tháng 4 2020

a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(=>x+36=0\)

\(=>x=36\)

2 tháng 4 2020

\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)

\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)

\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)

\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))

\(\Leftrightarrow x=-2004\)

2 tháng 4 2020

\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)\(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)

\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)\(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)

\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)

\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)

\(\Leftrightarrow x=-2004\)

Vậy PT có tập nghiệm S = {-2004}

28 tháng 2 2020

a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)

\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)

\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)

\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

c) \(x^3-3x^2+4=0\)

\(\Leftrightarrow x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

19 tháng 3 2017

\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)<=>  \(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)

<=>\(\frac{8+x-8}{x-8}+\frac{11+x-11}{x-11}=\frac{9+x-9}{x-9}+\frac{10+x-10}{x-10}\)

<=>\(\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)

<=>\(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

<=>\(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)

=>\(\orbr{\begin{cases}x=0\\\frac{1}{x-8}+\frac{1}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\end{cases}}\)

đến đoạn bạn giải tiếp nhé

27 tháng 2 2020

Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)

\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)

\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)

\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)

\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)

\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)

Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)

=> x - 2000 = 0 

=> x = 2000